MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Diagonal and Low-Rank Matrix Decompositions, Correlation Matrices, and Ellipsoid Fitting

Author(s)
Saunderson, James F.; Chandrasekaran, Venkat; Parrilo, Pablo A.; Willsky, Alan S.
Thumbnail
DownloadSaunderson-2012-DIAGONAL AND LOW-RANK MATRIX DECOMPOSITIONS.pdf (371.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In this paper we establish links between, and new results for, three problems that are not usually considered together. The first is a matrix decomposition problem that arises in areas such as statistical modeling and signal processing: given a matrix $X$ formed as the sum of an unknown diagonal matrix and an unknown low-rank positive semidefinite matrix, decompose $X$ into these constituents. The second problem we consider is to determine the facial structure of the set of correlation matrices, a convex set also known as the elliptope. This convex body, and particularly its facial structure, plays a role in applications from combinatorial optimization to mathematical finance. The third problem is a basic geometric question: given points $v_1,v_2,\ldots,v_n\in \mathbb{R}^k$ (where $n > k$) determine whether there is a centered ellipsoid passing exactly through all the points. We show that in a precise sense these three problems are equivalent. Furthermore we establish a simple sufficient condition on a subspace $\mathcal{U}$ that ensures any positive semidefinite matrix $L$ with column space $\mathcal{U}$ can be recovered from $D+L$ for any diagonal matrix $D$ using a convex optimization-based heuristic known as minimum trace factor analysis. This result leads to a new understanding of the structure of rank-deficient correlation matrices and a simple condition on a set of points that ensures there is a centered ellipsoid passing through them.
Date issued
2012-12
URI
http://hdl.handle.net/1721.1/77630
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
SIAM Journal on Matrix Analysis and Applications
Publisher
Society for Industrial and Applied Mathematics
Citation
Saunderson, J. et al. “Diagonal and Low-Rank Matrix Decompositions, Correlation Matrices, and Ellipsoid Fitting.” SIAM Journal on Matrix Analysis and Applications 33.4 (2012): 1395–1416.
Version: Final published version
ISSN
0895-4798
1095-7162

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.