Show simple item record

dc.contributor.authorLieberman, Chad E.
dc.contributor.authorWillcox, Karen E.
dc.date.accessioned2013-03-15T15:25:34Z
dc.date.available2013-03-15T15:25:34Z
dc.date.issued2012-07
dc.date.submitted2012-05
dc.identifier.issn1064-8275
dc.identifier.issn1095-7197
dc.identifier.urihttp://hdl.handle.net/1721.1/77905
dc.description.abstractInference of model parameters is one step in an engineering process often ending in predictions that support decision in the form of design or control. Incorporation of end goals into the inference process leads to more efficient goal-oriented algorithms that automatically target the most relevant parameters for prediction. In the linear setting the control-theoretic concepts underlying balanced truncation model reduction can be exploited in inference through a dimensionally optimal subspace regularizer. The inference-for-prediction method exactly replicates the prediction results of either truncated singular value decomposition, Tikhonov-regularized, or Gaussian statistical inverse problem formulations independent of data; it sacrifices accuracy in parameter estimate for online efficiency. The new method leads to low-dimensional parameterization of the inverse problem enabling solution on smartphones or laptops in the field.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Multi University Research Initiative (MURI) Program)en_US
dc.language.isoen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/110857763en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSIAMen_US
dc.titleGoal-Oriented Inference: Approach, Linear Theory, and Application to Advection Diffusionen_US
dc.typeArticleen_US
dc.identifier.citationLieberman, Chad, and Karen Willcox. “Goal-Oriented Inference: Approach, Linear Theory, and Application to Advection Diffusion.” SIAM Journal on Scientific Computing 34.4 (2012): A1880–A1904. CrossRef. Web. © 2012, Society for Industrial and Applied Mathematics.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorLieberman, Chad E.
dc.contributor.mitauthorWillcox, Karen E.
dc.relation.journalSIAM Journal on Scientific Computingen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLieberman, Chad; Willcox, Karenen
dc.identifier.orcidhttps://orcid.org/0000-0003-2156-9338
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record