MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Carbon isotopic (C-13 and C-14) composition of synthetic estrogens and progestogens

Author(s)
Griffith, David Richmond; Wacker, Lukas; Gschwend, Philip M.; Eglinton, Timothy I.
Thumbnail
DownloadGschwend_Carbon isotopic.pdf (1.123Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
RATIONALE: Steroids are potent hormones that are found in many environments. Yet, contributions from synthetic and endogenous sources are largely uncharacterized. The goal of this study was to evaluate whether carbon isotopes could be used to distinguish between synthetic and endogenous steroids in wastewater and other environmental matrices. METHODS: Estrogens and progestogens were isolated from oral contraceptive pills using semi-preparative liquid chromatography/diode array detection (LC/DAD). Compound purity was confirmed by gas chromatography/flame ionization detection (GC/FID), gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS) and liquid chromatography/mass spectrometry using negative electrospray ionization (LC/ESI-MS). The 13C content was determined by gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and 14C was measured by accelerator mass spectrometry (AMS). RESULTS: Synthetic estrogens and progestogens are 13C-depleted (δ13Cestrogen = –30.0 ± 0.9 ‰; δ13Cprogestogen = –30.3 ± 2.6 ‰) compared with endogenous hormones (δ13C ~ –16 to –26 ‰). The 14C content of the majority of synthetic hormones is consistent with synthesis from C3 plant-based precursors, amended with 'fossil' carbon in the case of EE2 and norethindrone acetate. Exceptions are progestogens that contain an ethyl group at carbon position 13 and have entirely 'fossil' 14C signatures. CONCLUSIONS: Carbon isotope measurements have the potential to distinguish between synthetic and endogenous hormones in the environment. Our results suggest that 13C could be used to discriminate endogenous from synthetic estrogens in animal waste, wastewater effluent, and natural waters. In contrast, 13C and 14C together may prove useful for tracking synthetic progestogens. Copyright © 2012 John Wiley & Sons, Ltd.
Date issued
2012-10
URI
http://hdl.handle.net/1721.1/77916
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Woods Hole Oceanographic Institution
Journal
Rapid Communications in Mass Spectrometry
Publisher
Wiley Blackwell
Citation
Griffith, David R. et al. “Carbon Isotopic (13 C and 14 C) Composition of Synthetic Estrogens and Progestogens.” Rapid Communications in Mass Spectrometry 26.22 (2012): 2619–2626.
Version: Author's final manuscript
ISSN
0951-4198
1097-0231

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.