MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data

Author(s)
Lana, A.; Simo, R.; Vallina, S. M.; Dachs, J.
Thumbnail
DownloadLana-2012-Potential for a biog.pdf (1.059Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth's radiation budget. Aerosol–cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays an important role in regulating cloud brightness in the pristine oceanic atmosphere remains largely unexplored. We used 9 yr of global satellite data and ocean climatologies to derive parameterizations of the temporal variability of (a) production fluxes of sulfur aerosols formed by the oxidation of the biogenic gas dimethylsulfide emitted from the sea surface; (b) production fluxes of secondary organic aerosols from biogenic organic volatiles; (c) emission fluxes of biogenic primary organic aerosols ejected by wind action on sea surface; and (d) emission fluxes of sea salt also lifted by the wind upon bubble bursting. Series of global monthly estimates of these fluxes were correlated to series of potential cloud condensation nuclei (CCN) numbers derived from satellite (MODIS). More detailed comparisons among weekly series of estimated fluxes and satellite-derived cloud droplet effective radius (r[subscript e]) data were conducted at locations spread among polluted and clean regions of the oceanic atmosphere. The outcome of the statistical analysis was that positive correlation to CCN numbers and negative correlation to r[subscript e] were common at mid and high latitude for sulfur and organic secondary aerosols, indicating both might be important in seeding cloud droplet activation. Conversely, primary aerosols (organic and sea salt) showed widespread positive correlations to CCN only at low latitudes. Correlations to r[subscript e] were more variable, non-significant or positive, suggesting that, despite contributing to large shares of the marine aerosol mass, primary aerosols are not widespread major drivers of the variability of cloud microphysics. Validation against ground measurements pointed out that the parameterizations used captured fairly well the variability of aerosol production fluxes in most cases, yet some caution is warranted because there is room for further improvement, particularly for primary organic aerosol. Uncertainties and synergies are discussed, and recommendations of research needs are given.
Date issued
2012-09
URI
http://hdl.handle.net/1721.1/77948
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Atmospheric Chemistry and Physics
Publisher
Copernicus GmbH
Citation
Lana, A. et al. “Potential for a Biogenic Influence on Cloud Microphysics over the Ocean: a Correlation Study with Satellite-derived Data.” Atmospheric Chemistry and Physics 12.17 (2012): 7977–7993.
Version: Final published version
ISSN
1680-7324
1680-7324

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.