Show simple item record

dc.contributor.authorMarcos
dc.contributor.authorSeymour, Justin R.
dc.contributor.authorLuhar, Mitul
dc.contributor.authorDurham, William M.
dc.contributor.authorMitchell, James G.
dc.contributor.authorMackee, Andreas
dc.contributor.authorStocker, Roman
dc.date.accessioned2013-03-21T19:57:01Z
dc.date.available2013-03-21T19:57:01Z
dc.date.issued2011-02
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/77974
dc.description.abstractThe growth of microbial cultures in the laboratory often is assessed informally with a quick flick of the wrist: dense suspensions of microorganisms produce translucent “swirls” when agitated. Here, we rationalize the mechanism behind this phenomenon and show that the same process may affect the propagation of light through the upper ocean. Analogous to the shaken test tubes, the ocean can be characterized by intense fluid motion and abundant microorganisms. We demonstrate that the swirl patterns arise when elongated microorganisms align preferentially in the direction of fluid flow and alter light scattering. Using a combination of experiments and mathematical modeling, we find that this phenomenon can be recurrent under typical marine conditions. Moderate shear rates (0.1 s[superscript −1]) can increase optical backscattering of natural microbial assemblages by more than 20%, and even small shear rates (0.001 s[superscript −1]) can increase backscattering from blooms of large phytoplankton by more than 30%. These results imply that fluid flow, currently neglected in models of marine optics, may exert an important control on light propagation, influencing rates of global carbon fixation and how we estimate these rates via remote sensing.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant OCE-0744641-CAREER)en_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1014576108en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleMicrobial alignment in flow changes ocean light climateen_US
dc.typeArticleen_US
dc.identifier.citationMarcos et al. “Microbial Alignment in Flow Changes Ocean Light Climate.” Proceedings of the National Academy of Sciences 108.10 (2011): 3860–3864. ©2011 National Academy of Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentParsons Laboratory for Environmental Science and Engineering (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorMarcos
dc.contributor.mitauthorSeymour, Justin R.
dc.contributor.mitauthorLuhar, Mitul
dc.contributor.mitauthorDurham, William M.
dc.contributor.mitauthorStocker, Roman
dc.relation.journalProceedings of the National Academy of Sciences of the United States of Americaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMarcos; Seymour, J. R.; Luhar, M.; Durham, W. M.; Mitchell, J. G.; Macke, A.; Stocker, R.en
dc.identifier.orcidhttps://orcid.org/0000-0002-3199-0508
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record