dc.contributor.author | Fenning, David P. | |
dc.contributor.author | Hofstetter, Jasmin | |
dc.contributor.author | Bertoni, Mariana I. | |
dc.contributor.author | Hudelson, S. | |
dc.contributor.author | Rinio, M. | |
dc.contributor.author | Lelievre, J. F. | |
dc.contributor.author | Lai, Barry | |
dc.contributor.author | del Canizo, C. | |
dc.contributor.author | Buonassisi, Tonio | |
dc.date.accessioned | 2013-03-27T18:53:00Z | |
dc.date.available | 2013-03-27T18:53:00Z | |
dc.date.issued | 2011-04 | |
dc.date.submitted | 2010-10 | |
dc.identifier.issn | 0003-6951 | |
dc.identifier.issn | 1077-3118 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/78005 | |
dc.description.abstract | The evolution during silicon solar cell processing of performance-limiting iron impurities is investigated with synchrotron-based x-ray fluorescence microscopy. We find that during industrial phosphorus diffusion, bulk precipitate dissolution is incomplete in wafers with high metal content, specifically ingot border material. Postdiffusion low-temperature annealing is not found to alter appreciably the size or spatial distribution of FeSi[subscript 2] precipitates, although cell efficiency improves due to a decrease in iron interstitial concentration. Gettering simulations successfully model experiment results and suggest the efficacy of high- and low-temperature processing to reduce both precipitated and interstitial iron concentrations, respectively. | en_US |
dc.description.sponsorship | United States. Dept. of Energy (Contract DE-FG36-09GO1900) | en_US |
dc.description.sponsorship | Spanish Ministry of Science and Innovation (Thincells Project TEC2008-06798-C03-02) | en_US |
dc.language.iso | en_US | |
dc.publisher | American Institute of Physics (AIP) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1063/1.3575583 | en_US |
dc.title | Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Fenning, D. P. et al. “Iron Distribution in Silicon After Solar Cell Processing: Synchrotron Analysis and Predictive Modeling.” Applied Physics Letters 98.16 (2011): 162103. ©2011 American Institute of Physics | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
dc.contributor.mitauthor | Fenning, David P. | |
dc.contributor.mitauthor | Bertoni, Mariana I. | |
dc.contributor.mitauthor | Hudelson, S. | |
dc.contributor.mitauthor | Buonassisi, Tonio | |
dc.relation.journal | Applied Physics Letters | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Fenning, D. P.; Hofstetter, J.; Bertoni, M. I.; Hudelson, S.; Rinio, M.; Lelièvre, J. F.; Lai, B.; del Cañizo, C.; Buonassisi, T. | en |
dc.identifier.orcid | https://orcid.org/0000-0002-4609-9312 | |
dc.identifier.orcid | https://orcid.org/0000-0001-8345-4937 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |