Show simple item record

dc.contributor.authorErnst, Jason
dc.contributor.authorKellis, Manolis
dc.contributor.authorHoffman, Michael M.
dc.contributor.authorWilder, Steven P.
dc.contributor.authorKundaje, Anshul
dc.contributor.authorHarris, Robert S.
dc.contributor.authorLibbrecht, Max
dc.contributor.authorGiardine, Belinda
dc.contributor.authorEllenbogen, Paul M.
dc.contributor.authorBilmes, Jeffrey A.
dc.contributor.authorBirney, Ewan
dc.contributor.authorHardison, Ross C.
dc.contributor.authorDunham, Ian
dc.contributor.authorNoble, William Stafford
dc.date.accessioned2013-04-02T20:50:53Z
dc.date.available2013-04-02T20:50:53Z
dc.date.issued2012-12
dc.date.submitted2012-11
dc.identifier.issn0305-1048
dc.identifier.issn1362-4962
dc.identifier.urihttp://hdl.handle.net/1721.1/78261
dc.description.abstractThe ENCODE Project has generated a wealth of experimental information mapping diverse chromatin properties in several human cell lines. Although each such data track is independently informative toward the annotation of regulatory elements, their interrelations contain much richer information for the systematic annotation of regulatory elements. To uncover these interrelations and to generate an interpretable summary of the massive datasets of the ENCODE Project, we apply unsupervised learning methodologies, converting dozens of chromatin datasets into discrete annotation maps of regulatory regions and other chromatin elements across the human genome. These methods rediscover and summarize diverse aspects of chromatin architecture, elucidate the interplay between chromatin activity and RNA transcription, and reveal that a large proportion of the genome lies in a quiescent state, even across multiple cell types. The resulting annotation of non-coding regulatory elements correlate strongly with mammalian evolutionary constraint, and provide an unbiased approach for evaluating metrics of evolutionary constraint in human. Lastly, we use the regulatory annotations to revisit previously uncharacterized disease-associated loci, resulting in focused, testable hypotheses through the lens of the chromatin landscape.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (HG005334)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (HG004570)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (0905968)en_US
dc.language.isoen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/nar/gks1284en_US
dc.rightsCreative Commons Attribution 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0en_US
dc.sourceOxford University Pressen_US
dc.titleIntegrative annotation of chromatin elements from ENCODE dataen_US
dc.typeArticleen_US
dc.identifier.citationHoffman, M. M. et al. “Integrative Annotation of Chromatin Elements from ENCODE Data.” Nucleic Acids Research 41.2 (2012): 827–841.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorErnst, Jason
dc.contributor.mitauthorKellis, Manolis
dc.relation.journalNucleic Acids Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHoffman, M. M.; Ernst, J.; Wilder, S. P.; Kundaje, A.; Harris, R. S.; Libbrecht, M.; Giardine, B.; Ellenbogen, P. M.; Bilmes, J. A.; Birney, E.; Hardison, R. C.; Dunham, I.; Kellis, M.; Noble, W. S.en
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record