MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Wideband enhancement of infrared absorption in a direct band-gap semiconductor by using nonabsorptive pyramids

Author(s)
Dai, Weitao; Yap, Daniel; Chen, Gang
Thumbnail
DownloadChen_Wideband enhancement.pdf (910.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Efficient trapping of the light in a photon absorber or a photodetector can improve its performance and reduce its cost. In this paper we investigate two designs for light-trapping in application to infrared absorption. Our numerical simulations demonstrate that nonabsorptive pyramids either located on top of an absorbing film or having embedded absorbing rods can efficiently enhance the absorption in the absorbing material. A spectrally averaged absorptance of 83% is achieved compared to an average absorptance of 28% for the optimized multilayer structure that has the same amount of absorbing material. This enhancement is explained by the coupled-mode theory. Similar designs can also be applied to solar cells.
Date issued
2012-06
URI
http://hdl.handle.net/1721.1/78279
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Optics Express
Publisher
Optical Society of America
Citation
Dai, Weitao, Daniel Yap, and Gang Chen. “Wideband Enhancement of Infrared Absorption in a Direct Band-gap Semiconductor by Using Nonabsorptive Pyramids.” Optics Express 20.S4 (2012): A519. © 2012 OSA
Version: Final published version
ISSN
1094-4087

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.