MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations

Author(s)
Luo, Tengfei; Garg, Jivtesh; Shiomi, Junichiro; Esfarjani, Keivan; Chen, Gang
Thumbnail
DownloadChen_Gallium arsenide.pdf (1.268Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
In this paper, thermal conductivity of crystalline GaAs is calculated using first-principles lattice dynamics. The harmonic and cubic force constants are obtained by fitting them to the force-displacement data from density functional theory calculations. Phonon dispersion is calculated from a dynamical matrix constructed using the harmonic force constants and phonon relaxation times are calculated using Fermi's Golden rule. The calculated GaAs thermal conductivity agrees well with experimental data. Thermal conductivity accumulations as a function of the phonon mean free path and as a function of the wavelength are obtained. Our results predict a significant size effect on the GaAs thermal conductivity in the nanoscale. Relaxation times of optical phonons and their contributions from different scattering channels are also studied. Such information will help the understanding of hot phonon effects in GaAs-based devices.
Date issued
2013-01
URI
http://hdl.handle.net/1721.1/78295
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Europhysics Letters
Publisher
IOP Publishing
Citation
Luo, Tengfei et al. “Gallium Arsenide Thermal Conductivity and Optical Phonon Relaxation Times from First-principles Calculations.” EPL (Europhysics Letters) 101.1 (2013): 16001.
Version: Author's final manuscript
ISSN
0295-5075
1286-4854

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.