MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanoscale thermal radiation between two gold surfaces

Author(s)
Shen, Sheng; Mavrokefalos, Anastassios; Sambegoro, Poetro Lebdo; Chen, Gang
Thumbnail
DownloadChen_Nanoscale thermal.pdf (1.052Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In this letter, we measured the nanoscale thermal radiation between a microsphere and a substrate which were both coated with thick gold films. Although gold is highly reflective for thermal radiation, the radiative heat transfer between two gold surfaces was demonstrated to be significantly enhanced at nanoscale gaps beyond the blackbody radiation limit due to the tunneling of non-resonant evanescent waves. The measured heat transfer coefficient between two gold surfaces agreed well with theoretical prediction. At a gap d = 30 nm ± 5 nm, the heat transfer coefficient between two gold surfaces was observed to be as large as ∼400 W/m[superscript 2]·K, much greater than the blackbody radiation limit (∼5 W/m[superscript 2]·K).
Date issued
2012-06
URI
http://hdl.handle.net/1721.1/78324
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. School of Engineering
Journal
Applied Physics Letters
Publisher
American Institute of Physics (AIP)
Citation
Shen, Sheng et al. “Nanoscale Thermal Radiation Between Two Gold Surfaces.” Applied Physics Letters 100.23 (2012): 233114. ©2012 American Institute of Physics
Version: Final published version
ISSN
0003-6951
1077-3118

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.