Show simple item record

dc.contributor.authorMorishige, Ashley Elizabeth
dc.contributor.authorFenning, David P.
dc.contributor.authorHofstetter, Jasmin
dc.contributor.authorPowell, Douglas Michael
dc.contributor.authorBuonassisi, Tonio
dc.date.accessioned2013-04-10T20:19:55Z
dc.date.available2013-04-10T20:19:55Z
dc.date.issued2012-06
dc.identifier.isbn978-1-4673-0064-3
dc.identifier.issn0160-8371
dc.identifier.otherINSPEC Accession Number: 13055564
dc.identifier.urihttp://hdl.handle.net/1721.1/78338
dc.descriptionhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6318036en_US
dc.description.abstractDefect engineering is essential for the production of high-performance silicon photovoltaic (PV) devices with cost-effective solar-grade Si input materials. Phosphorus diffusion gettering (PDG) can mitigate the detrimental effect of metal impurities on PV device performance. Using the Impurity-to-Efficiency (I2E) simulator, we investigate the effect of gettering temperature on minority carrier lifetime while maintaining an approximately constant sheet resistance. We simulate a typical constant temperature plateau profile and an alternative “volcano” profile that consists of a ramp up to a peak temperature above the typical plateau temperature followed by a ramp down with no hold time. Our simulations show that for a given PDG process time, the “volcano” produces an increase in minority carrier lifetime compared to the standard plateau profile for as-grown iron distributions that are typical for multicrystalline silicon. For an initial total iron concentration of 5×1013 cm-3, we simulate a 30% increase in minority carrier lifetime for a fixed PDG process time and a 43% reduction in PDG process cost for a given effective minority carrier lifetime while achieving a constant sheet resistance of 100 Ω/□.en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (NSF CA No. EEC-1041895)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. School of Engineering (SMA2 Fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Graduate Research Fellowship)en_US
dc.description.sponsorshipAlexander von Humboldt-Stiftung (Feodor Lynen Fellowship Program)en_US
dc.description.sponsorshipUnited States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/PVSC.2012.6318036en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleSimulated Co-Optimization of Crystalline Silicon Solar Cell Throughput and Efficiency Using Continuously Ramping Phosphorus Diffusion Profilesen_US
dc.typeArticleen_US
dc.identifier.citationMorishige, Ashley E. et al. “Simulated Co-optimization of Crystalline Silicon Solar Cell Throughput and Efficiency Using Continuously Ramping Phosphorus Diffusion Profiles.” 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), IEEE, 2012. 002213–002217. CrossRef. Web.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorMorishige, Ashley Elizabeth
dc.contributor.mitauthorFenning, David P.
dc.contributor.mitauthorHofstetter, Jasmin
dc.contributor.mitauthorPowell, Douglas Michael
dc.contributor.mitauthorBuonassisi, Tonio
dc.relation.journalProceedings of the 38th IEEE Photovoltaic Specialists Conference (PVSC), 2012en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsMorishige, Ashley E.; Fenning, David P.; Hofstetter, Jasmin; Powell, Douglas M.; Buonassisi, Tonioen
dc.identifier.orcidhttps://orcid.org/0000-0002-4609-9312
dc.identifier.orcidhttps://orcid.org/0000-0001-9352-8741
dc.identifier.orcidhttps://orcid.org/0000-0001-8345-4937
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record