Show simple item record

dc.contributor.authorNagy, Bela
dc.contributor.authorFarmer, J. Doyne
dc.contributor.authorBui, Quan M.
dc.contributor.authorTrancik, Jessika E.
dc.date.accessioned2013-04-24T14:11:34Z
dc.date.available2013-04-24T14:11:34Z
dc.date.issued2013-02
dc.date.submitted2012-06
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/1721.1/78582
dc.description.abstractForecasting technological progress is of great interest to engineers, policy makers, and private investors. Several models have been proposed for predicting technological improvement, but how well do these models perform? An early hypothesis made by Theodore Wright in 1936 is that cost decreases as a power law of cumulative production. An alternative hypothesis is Moore's law, which can be generalized to say that technologies improve exponentially with time. Other alternatives were proposed by Goddard, Sinclair et al., and Nordhaus. These hypotheses have not previously been rigorously tested. Using a new database on the cost and production of 62 different technologies, which is the most expansive of its kind, we test the ability of six different postulated laws to predict future costs. Our approach involves hindcasting and developing a statistical model to rank the performance of the postulated laws. Wright's law produces the best forecasts, but Moore's law is not far behind. We discover a previously unobserved regularity that production tends to increase exponentially. A combination of an exponential decrease in cost and an exponential increase in production would make Moore's law and Wright's law indistinguishable, as originally pointed out by Sahal. We show for the first time that these regularities are observed in data to such a degree that the performance of these two laws is nearly the same. Our results show that technological progress is forecastable, with the square root of the logarithmic error growing linearly with the forecasting horizon at a typical rate of 2.5% per year. These results have implications for theories of technological change, and assessments of candidate technologies and policies for climate change mitigation.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant NSF-0738187)en_US
dc.language.isoen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pone.0052669en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/en_US
dc.sourcePLoSen_US
dc.titleStatistical Basis for Predicting Technological Progressen_US
dc.typeArticleen_US
dc.identifier.citationNagy, Béla et al. “Statistical Basis for Predicting Technological Progress.” Ed. Luís A. Nunes Amaral. PLoS ONE 8.2 (2013): e52669.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Divisionen_US
dc.contributor.mitauthorTrancik, Jessika E.
dc.relation.journalPLoS ONEen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsNagy, Béla; Farmer, J. Doyne; Bui, Quan M.; Trancik, Jessika E.en
dc.identifier.orcidhttps://orcid.org/0000-0001-6305-2105
dspace.mitauthor.errortrue
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record