Show simple item record

dc.contributor.authorEydgahi, Hoda
dc.contributor.authorChen, William W.
dc.contributor.authorMuhlich, Jeremy L.
dc.contributor.authorVitkup, Dennis
dc.contributor.authorTsitsiklis, John N.
dc.contributor.authorSorger, Peter K.
dc.date.accessioned2013-04-24T15:55:22Z
dc.date.available2013-04-24T15:55:22Z
dc.date.issued2013-02
dc.date.submitted2012-06
dc.identifier.issn1744-4292
dc.identifier.urihttp://hdl.handle.net/1721.1/78587
dc.description.abstractUsing models to simulate and analyze biological networks requires principled approaches to parameter estimation and model discrimination. We use Bayesian and Monte Carlo methods to recover the full probability distributions of free parameters (initial protein concentrations and rate constants) for mass-action models of receptor-mediated cell death. The width of the individual parameter distributions is largely determined by non-identifiability but covariation among parameters, even those that are poorly determined, encodes essential information. Knowledge of joint parameter distributions makes it possible to compute the uncertainty of model-based predictions whereas ignoring it (e.g., by treating parameters as a simple list of values and variances) yields nonsensical predictions. Computing the Bayes factor from joint distributions yields the odds ratio (~20-fold) for competing ‘direct’ and ‘indirect’ apoptosis models having different numbers of parameters. Our results illustrate how Bayesian approaches to model calibration and discrimination combined with single-cell data represent a generally useful and rigorous approach to discriminate between competing hypotheses in the face of parametric and topological uncertainty.en_US
dc.description.sponsorshipNational Institutes of Health (Grant CA139980)en_US
dc.description.sponsorshipNational Institutes of Health (Grant GM68762)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/msb.2012.69en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMolecular Systems Biology/Nature Publishing Groupen_US
dc.titleProperties of cell death models calibrated and compared using Bayesian approachesen_US
dc.typeArticleen_US
dc.identifier.citationEydgahi, Hoda et al. “Properties of Cell Death Models Calibrated and Compared Using Bayesian Approaches.” Molecular Systems Biology 9 (2013). ©2013 Nature Publishing Groupen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorEydgahi, Hoda
dc.contributor.mitauthorTsitsiklis, John N.
dc.relation.journalMolecular Systems Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsEydgahi, Hoda; Chen, William W; Muhlich, Jeremy L; Vitkup, Dennis; Tsitsiklis, John N; Sorger, Peter Ken
dc.identifier.orcidhttps://orcid.org/0000-0003-2658-8239
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record