MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Propeller blade stress estimates using lifting line theory

Author(s)
Epps, Brenden P.; Ketcham, Jerod W.; Chryssostomidis, Chryssostomos
Thumbnail
DownloadChryssostomos_Propeller blade.pdf (4.466Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
OpenProp, an open-source computational tool for the design and analysis of propellers and horizontal-axis turbines, is extended to provide estimates of normal stresses in the blades for both on- and off-design operating conditions. The numerical model is based on propeller lifting theory, and the present implementation of the code includes an analysis capability to estimate the off-design performance of the propeller or turbine and to make blade stress predictions. As an example, we present the design and performance of a two-bladed propeller. Experimental measurements of the propeller performance over a wide range of off-design operating conditions agree with performance predictions. Estimates of the blade stress are given for on-design and off-design operating states of the propeller.
Date issued
2010-07
URI
http://hdl.handle.net/1721.1/78622
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Sea Grant College Program
Journal
Proceedings of the 2010 Conference on Grand Challenges in Modeling & Simulation, GCMS '10
Publisher
Association for Computing Machinery
Citation
Epps, Brenden, Jerod Ketcham, and Chryssostomos Chryssostomidis. "Propeller blade stress estimates using lifting line theory." Grand Challenges in Modeling & Simulation: Proceedings of the 2010 Summer Simulation Multiconference, SummerSim '10 2010, Ottawa, ON, Canada, July 11-14, 2010. Web.
Version: Author's final manuscript
ISBN
9781617387043

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.