Show simple item record

dc.contributor.authorHummel, Robert
dc.contributor.authorPoduri, Sameera
dc.contributor.authorHover, Franz S.
dc.contributor.authorMitra, Urbashi
dc.contributor.authorSukhatme, Guarav
dc.date.accessioned2013-04-29T20:05:11Z
dc.date.available2013-04-29T20:05:11Z
dc.date.issued2011-05
dc.identifier.isbn978-1-61284-386-5
dc.identifier.issn1050-4729
dc.identifier.urihttp://hdl.handle.net/1721.1/78635
dc.description.abstractThis paper considers mission design strategies for mobile robots whose task is to perform spatial sampling of a static environmental field, in the framework of compressive sensing. According to this theory, we can reconstruct compressible fields using O(log n) nonadaptive measurements (where n is the number of sites of the spatial domain), in a basis that is "in coherent" to the representation basis [1]; random uncorrelated measurements satisfy this incoherence requirement. Because an autonomous vehicle is kinematically constrained and has finite energy and communication resources, it is an open question how to best design missions for CS reconstruction. We compare a two-dimensional random walk, a TSP approximation to pass through random points, and a randomized boustrophedon (lawnmower) strategy. Not unexpectedly, all three approaches can yield comparable reconstruction performance if the planning horizons are long enough; if planning occurs only over short time scales, the random walk will have an advantage.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2011.5980497en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleMission Design for Compressive Sensing with Mobile Robotsen_US
dc.typeArticleen_US
dc.identifier.citationHummel, Robert, Sameera Poduri, Franz Hover, Urbashi Mitra, and Guarav Sukhatme. Mission Design for Compressive Sensing with Mobile Robots. In Pp. 2362–2367. 2011, IEEE.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorHummel, Robert
dc.contributor.mitauthorHover, Franz S.
dc.relation.journalIEEE International Conference on Robotics and Automation (ICRA), 2011en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsHummel, Robert; Poduri, Sameera; Hover, Franz; Mitra, Urbashi; Sukhatme, Guaraven
dc.identifier.orcidhttps://orcid.org/0000-0002-2621-7633
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record