Show simple item record

dc.contributor.authorHollinger, Geoffrey A.
dc.contributor.authorEnglot, Brendan J.
dc.contributor.authorHover, Franz S.
dc.contributor.authorMitra, Urbashi
dc.contributor.authorSukhatme, Gaurav S.
dc.date.accessioned2013-04-29T20:40:31Z
dc.date.available2013-04-29T20:40:31Z
dc.date.issued2012-05
dc.identifier.isbn978-1-4673-1404-6
dc.identifier.isbn978-1-4673-1403-9
dc.identifier.issn1050-4729
dc.identifier.urihttp://hdl.handle.net/1721.1/78637
dc.description.abstractWe discuss the problem of inspecting an underwater structure, such as a submerged ship hull, with an autonomous underwater vehicle (AUV). In such scenarios, the goal is to construct an accurate 3D model of the structure and to detect any anomalies (e.g., foreign objects or deformations). We propose a method for constructing 3D meshes from sonar-derived point clouds that provides watertight surfaces, and we introduce uncertainty modeling through non-parametric Bayesian regression. Uncertainty modeling provides novel cost functions for planning the path of the AUV to minimize a metric of inspection performance. We draw connections between the resulting cost functions and submodular optimization, which provides insight into the formal properties of active perception problems. In addition, we present experimental trials that utilize profiling sonar data from ship hull inspection.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N 00014-09-1-0700)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N 00014-07-1-00738)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N00014-06-10043)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (0831728)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CCR - 0120778)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CNS - 1035866)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2012.6224726en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceOther University Web Domainen_US
dc.titleUncertainty-driven view planning for underwater inspectionen_US
dc.typeArticleen_US
dc.identifier.citationHollinger, Geoffrey A., Brendan Englot, Franz Hover, Urbashi Mitra, and Gaurav S. Sukhatme. Uncertainty-driven View Planning for Underwater Inspection. In Pp. 4884–4891. 2012, IEEE.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorEnglot, Brendan J.
dc.contributor.mitauthorHover, Franz S.
dc.relation.journalIEEE International Conference on Robotics and Automation (ICRA), 2012en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsHollinger, Geoffrey A.; Englot, Brendan; Hover, Franz; Mitra, Urbashi; Sukhatme, Gaurav S.en
dc.identifier.orcidhttps://orcid.org/0000-0002-2621-7633
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record