Reconstruction of phyletic trees by global alignment of multiple metabolic networks
Author(s)
Ma, Cheng-Yu; Lin, Shu-Hsi; Lee, Chi-Ching; Tang, Chuan Yi; Berger, Bonnie; Liao, Chung-Shou; ... Show more Show less
DownloadMa-2013-Reconstruction of phyletic trees.pdf (1.010Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Background: In the last decade, a considerable amount of research has been devoted to investigating the phylogenetic properties of organisms from a systems-level perspective. Most studies have focused on the classification of organisms based on structural comparison and local alignment of metabolic pathways. In contrast, global alignment of multiple metabolic networks complements sequence-based phylogenetic analyses and provides more comprehensive information.
Results: We explored the phylogenetic relationships between microorganisms through global alignment of multiple metabolic networks. The proposed approach integrates sequence homology data with topological information of metabolic networks. In general, compared to recent studies, the resulting trees reflect the living style of organisms as well as classical taxa. Moreover, for phylogenetically closely related organisms, the classification results are consistent with specific metabolic characteristics, such as the light-harvesting systems, fermentation types, and sources of electrons in photosynthesis.
Conclusions: We demonstrate the usefulness of global alignment of multiple metabolic networks to infer phylogenetic relationships between species. In addition, our exhaustive analysis of microbial metabolic pathways reveals differences in metabolic features between phylogenetically closely related organisms. With the ongoing increase in the number of genomic sequences and metabolic annotations, the proposed approach will help identify phenotypic variations that may not be apparent based solely on sequence-based classification.
Date issued
2013-01Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of MathematicsJournal
BMC Bioinformatics
Publisher
Biomed Central Ltd.
Citation
Ma, Cheng-Yu et al. “Reconstruction of phyletic trees by global alignment of multiple metabolic networks.” BMC Bioinformatics 14.2 (2013).
Version: Final published version
ISSN
1471-2105