Automatic Aggregation by Joint Modeling of Aspects and Values
Author(s)
Sauper, Christina; Barzilay, Regina
DownloadSauper-2013-Automatic Aggregation by Joint Modeling of Aspects and Values.pdf (505.0Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We present a model for aggregation of product review snippets by joint aspect identification and sentiment analysis. Our model simultaneously identifies an underlying set of ratable aspects presented in the reviews of a product (e.g., sushi and miso for a Japanese restaurant) and determines the corresponding sentiment of each aspect. This approach directly enables discovery of highly-rated or inconsistent aspects of a product. Our generative model admits an efficient variational mean-field inference algorithm. It is also easily extensible, and we describe several modifications and their effects on model structure and inference. We test our model on two tasks, joint aspect identification and sentiment analysis on a set of Yelp reviews and aspect identification alone on a set of medical summaries. We evaluate the performance of the model on aspect identification, sentiment analysis, and per-word labeling accuracy. We demonstrate that our model outperforms applicable baselines by a considerable margin, yielding up to 32% relative error reduction on aspect identification and up to 20% relative error reduction on sentiment analysis.
Date issued
2013-01Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Journal of Artificial Intelligence Research
Publisher
Association for the Advancement of Artificial Intelligence
Citation
Sauper, Christina, and Regina Barzilay. "Automatic Aggregation by Joint Modeling of Aspects and Values." Journal of Artificial Intelligence Research 46 (2013): 89-127. ©2013 AI Access Foundation, Inc.
Version: Final published version
ISSN
1943-5037
1076-9757