Show simple item record

dc.contributor.authorHauschild, Markus
dc.contributor.authorMulliken, Grant Haverstock
dc.contributor.authorFineman, Igor
dc.contributor.authorLoeb, Gerald E.
dc.contributor.authorAndersen, Richard A.
dc.date.accessioned2013-05-09T15:10:20Z
dc.date.available2013-05-09T15:10:20Z
dc.date.issued2012-10
dc.date.submitted2012-06
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/78850
dc.description.abstractCortical neural prosthetics extract command signals from the brain with the goal to restore function in paralyzed or amputated patients. Continuous control signals can be extracted from the motor cortical areas, whereas neural activity from posterior parietal cortex (PPC) can be used to decode cognitive variables related to the goals of movement. Because typical activities of daily living comprise both continuous control tasks such as reaching, and tasks benefiting from discrete control such as typing on a keyboard, availability of both signals simultaneously would promise significant increases in performance and versatility. Here, we show that PPC can provide 3D hand trajectory information under natural conditions that would be encountered for prosthetic applications, thus allowing simultaneous extraction of continuous and discrete signals without requiring multisite surgical implants. We found that limb movements can be decoded robustly and with high accuracy from a small population of neural units under free gaze in a complex 3D point-to-point reaching task. Both animals’ brain-control performance improved rapidly with practice, resulting in faster target acquisition and increasing accuracy. These findings disprove the notion that the motor cortical areas are the only candidate areas for continuous prosthetic command signals and, rather, suggests that PPC can provide equally useful trajectory signals in addition to discrete, cognitive variables. Hybrid use of continuous and discrete signals from PPC may enable a new generation of neural prostheses providing superior performance and additional flexibility in addressing individual patient needs.en_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1215092109en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleCognitive signals for brain–machine interfaces in posterior parietal cortex include continuous 3D trajectory commandsen_US
dc.typeArticleen_US
dc.identifier.citationHauschild, M. et al. “Cognitive Signals for Brain-machine Interfaces in Posterior Parietal Cortex Include Continuous 3D Trajectory Commands.” Proceedings of the National Academy of Sciences 109.42 (2012): 17075–17080. ©2013 National Academy of Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorMulliken, Grant Haverstock
dc.relation.journalProceedings of the National Academy of Sciences of the United States of Americaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHauschild, M.; Mulliken, G. H.; Fineman, I.; Loeb, G. E.; Andersen, R. A.en
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record