MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mapping of Visual Receptive Fields by Tomographic Reconstruction

Author(s)
Pipa, Gordon; Chen, Zhe; Neuenschwander, Sergio; Lima, Bruss; Brown, Emery N.
Thumbnail
DownloadPipa-2012-Mapping of Visual Receptive Fields by Tomographic Reconstruction.pdf (3.596Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The moving bar experiment is a classic paradigm for characterizing the receptive field (RF) properties of neurons in primary visual cortex (V1). Current approaches for analyzing neural spiking activity recorded from these experiments do not take into account the point-process nature of these data and the circular geometry of the stimulus presentation. We present a novel analysis approach to mapping V1 receptive fields that combines point-process generalized linear models (PPGLM) with tomographic reconstruction computed by filtered-back projection. We use the method to map the RF sizes and orientations of 251 V1 neurons recorded from two macaque monkeys during a moving bar experiment. Our cross-validated goodness-of-fit analyses show that the PPGLM provides a more accurate characterization of spike train data than analyses based on rate functions computed by the methods of spike-triggered averages or first-order Wiener-Volterra kernel. Our analysis leads to a new definition of RF size as the spatial area over which the spiking activity is significantly greater than baseline activity. Our approach yields larger RF sizes and sharper orientation tuning estimates. The tomographic reconstruction paradigm further suggests an efficient approach to choosing the number of directions and the number of trials per direction in designing moving bar experiments. Our results demonstrate that standard tomographic principles for image reconstruction can be adapted to characterize V1 RFs and that two fundamental properties, size and orientation, may be substantially different from what is currently reported.
Date issued
2012-06
URI
http://hdl.handle.net/1721.1/78863
Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
Neural Computation
Publisher
MIT Press
Citation
Pipa, Gordon, Zhe Chen, Sergio Neuenschwander, Bruss Lima, and Emery N. Brown 2012Mapping of Visual Receptive Fields by Tomographic Reconstruction. Neural Computation 24(10): 2543–2578.
Version: Final published version
ISSN
0899-7667
1530-888X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.