MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Forecast-Based Decision Support for San Francisco International Airport: A NextGen Prototype System That Improves Operations during Summer Stratus Season

Author(s)
Reynolds, David W.; Clark, David A.; Wilson, Charles F.; Cook, Lara
Thumbnail
DownloadReynolds-2012-FORECAST-BASED DECISION SUPPORT.pdf (2.086Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
During summer, marine stratus encroaches into the approach to San Francisco International Airport (SFO) bringing low ceilings. Low ceilings restrict landings and result in a high number of arrival delays, thus impacting the National Air Space (NAS). These delays are managed by implementation of ground delay programs (GDPs), which hold traffic on the ground at origination airports in anticipation of insufficient arrival capacity at SFO. In an effort to reduce delays and improve both airport and NAS efficiency, the Federal Aviation Administration (FAA) funded a research effort begun in 1995 to develop an objective decision support system to aid forecasters in the prediction of stratus clearing times. By improving forecasts at this major airport, the scope and duration of ground and airborne holds can be reduced. The Marine Stratus Forecast System (MSFS) issues forecasts both deterministically and probabilistically. Following transition to NWS operations in 2004, the system continued to provide reliable forecasts but showed no significant improvement in delay reduction. Changes to the FAA GDP issuance procedures in 2008 allowed them to utilize the improved forecasts, leading to quantifiable reductions in ground and airborne holds for SFO equating to dollars saved. To further reduce delays, a refined statistically based model, the Ground Delay Parameters Selection Model (GPSM) for selecting an optimal ground delay strategy has been developed, utilizing the available archive of objective MSFS probabilistic forecasts and accompanying traffic flow data. This effort represents one of the first systematic attempts to integrate objective probabilistic weather information into the air traffic flow decision process, which is a cornerstone element of the FAA's visionary NextGen program.
Date issued
2012-10
URI
http://hdl.handle.net/1721.1/78871
Department
Lincoln Laboratory
Journal
Bulletin of the American Meteorological Society
Publisher
American Meteorological Society
Citation
Reynolds, David W., David A. Clark, F. Wesley Wilson, and Lara Cook. Forecast-Based Decision Support for San Francisco International Airport: A NextGen Prototype System That Improves Operations During Summer Stratus Season. Bulletin of the American Meteorological Society 93(10): 1503–1518, 2012. © 2012 American Meteorological Society
Version: Final published version
ISSN
0003-0007
1520-0477

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.