Show simple item record

dc.contributor.authorMoon, Tae Seok
dc.contributor.authorLou, Chunbo
dc.contributor.authorTamsir, Alvin
dc.contributor.authorStanton, Brynne Christine
dc.contributor.authorVoigt, Christopher A.
dc.date.accessioned2013-05-14T13:30:07Z
dc.date.available2013-05-14T13:30:07Z
dc.date.issued2012-10
dc.date.submitted2012-02
dc.identifier.issn0028-0836
dc.identifier.issn1476-4687
dc.identifier.urihttp://hdl.handle.net/1721.1/78872
dc.description.abstractGenetic programs function to integrate environmental sensors, implement signal processing algorithms and control expression dynamics[1]. These programs consist of integrated genetic circuits that individually implement operations ranging from digital logic to dynamic circuits[2, 3, 4, 5, 6], and they have been used in various cellular engineering applications, including the implementation of process control in metabolic networks and the coordination of spatial differentiation in artificial tissues. A key limitation is that the circuits are based on biochemical interactions occurring in the confined volume of the cell, so the size of programs has been limited to a few circuits[1, 7]. Here we apply part mining and directed evolution to build a set of transcriptional AND gates in Escherichia coli. Each AND gate integrates two promoter inputs and controls one promoter output. This allows the gates to be layered by having the output promoter of an upstream circuit serve as the input promoter for a downstream circuit. Each gate consists of a transcription factor that requires a second chaperone protein to activate the output promoter. Multiple activator–chaperone pairs are identified from type III secretion pathways in different strains of bacteria. Directed evolution is applied to increase the dynamic range and orthogonality of the circuits. These gates are connected in different permutations to form programs, the largest of which is a 4-input AND gate that consists of 3 circuits that integrate 4 inducible systems, thus requiring 11 regulatory proteins. Measuring the performance of individual gates is sufficient to capture the behaviour of the complete program. Errors in the output due to delays (faults), a common problem for layered circuits, are not observed. This work demonstrates the successful layering of orthogonal logic gates, a design strategy that could enable the construction of large, integrated circuits in single cells.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (Chronicle of Lineage Indicative of Origins N66001-12-C-4018)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N00014-10-1-0245)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CCF-0943385)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (AI067699)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Synthetic Biology Engineering Research Center SA5284-11210)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nature11516en_US
dc.rightsCreative Commons Attribution-Non-Commercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceProf. Voigt via Howarden_US
dc.titleGenetic Programs Constructed from Layered Logic Gates in Single Cellsen_US
dc.typeArticleen_US
dc.identifier.citationMoon, Tae Seok, Chunbo Lou, Alvin Tamsir, Brynne C. Stanton, and Christopher A. Voigt. Genetic Programs Constructed from Layered Logic Gates in Single Cells. Nature 491(7423): 249–253, 2012.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.approverVoigt, Christopher
dc.contributor.mitauthorMoon, Tae Seok
dc.contributor.mitauthorLou, Chunbo
dc.contributor.mitauthorStanton, Brynne Christine
dc.contributor.mitauthorVoigt, Christopher A.
dc.relation.journalNatureen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMoon, Tae Seok; Lou, Chunbo; Tamsir, Alvin; Stanton, Brynne C.; Voigt, Christopher A.en
dc.identifier.orcidhttps://orcid.org/0000-0003-0844-4776
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record