Show simple item record

dc.contributor.authorBontognali, Tomaso R. R.
dc.contributor.authorSessions, Alex L.
dc.contributor.authorAllwood, Abigail C.
dc.contributor.authorFischer, Woodward W.
dc.contributor.authorGrotzinger, John P.
dc.contributor.authorEiler, John M.
dc.contributor.authorSummons, Roger E
dc.date.accessioned2013-05-14T14:16:28Z
dc.date.available2013-05-14T14:16:28Z
dc.date.issued2012-09
dc.date.submitted2012-05
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/78875
dc.description.abstractThe 3.45-billion-year-old Strelley Pool Formation of Western Australia preserves stromatolites that are considered among the oldest evidence for life on Earth. In places of exceptional preservation, these stromatolites contain laminae rich in organic carbon, interpreted as the fossil remains of ancient microbial mats. To better understand the biogeochemistry of these rocks, we performed microscale in situ sulfur isotope measurements of the preserved organic sulfur, including both Δ33S and 𝛿 [superscript 34]S[subscript CDT]. This approach allows us to tie physiological inference from isotope ratios directly to fossil biomass, providing a means to understand sulfur metabolism that is complimentary to, and independent from, inorganic proxies (e.g., pyrite). Δ33S values of the kerogen reveal mass-anomalous fractionations expected of the Archean sulfur cycle, whereas 𝛿 [superscript 34]S[subscript CDT] values show large fractionations at very small spatial scales, including values below -15‰. We interpret these isotopic patterns as recording the process of sulfurization of organic matter by H2S in heterogeneous mat pore-waters influenced by respiratory S metabolism. Positive Δ33S anomalies suggest that disproportionation of elemental sulfur would have been a prominent microbial process in these communities.en_US
dc.description.sponsorshipExobiology Program (U.S.)en_US
dc.description.sponsorshipCaltech Center for Microanalysisen_US
dc.description.sponsorshipSwiss National Science Foundationen_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1207491109en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleSulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolismen_US
dc.typeArticleen_US
dc.identifier.citationBontognali, T. R. R., A. L. Sessions, A. C. Allwood, et al. 2012From the Cover: Sulfur Isotopes of Organic Matter Preserved in 3.45-billion-year-old Stromatolites Reveal Microbial Metabolism. Proceedings of the National Academy of Sciences 109(38): 15146–15151.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorSummons, Roger Everett
dc.relation.journalProceedings of the National Academy of Sciences of the United States of Americaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBontognali, T. R. R.; Sessions, A. L.; Allwood, A. C.; Fischer, W. W.; Grotzinger, J. P.; Summons, R. E.; Eiler, J. M.en
dc.identifier.orcidhttps://orcid.org/0000-0002-7144-8537
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record