Show simple item record

dc.contributor.authorRosen, David Matthew
dc.contributor.authorKaess, Michael
dc.contributor.authorLeonard, John Joseph
dc.date.accessioned2013-05-15T15:05:05Z
dc.date.available2013-05-15T15:05:05Z
dc.date.issued2013-05-15
dc.date.submitted2012-05
dc.identifier.isbn978-1-4673-1404-6
dc.identifier.isbn978-1-4673-1403-9
dc.identifier.issn1050-4729
dc.identifier.urihttp://hdl.handle.net/1721.1/78897
dc.description.abstractMany online inference problems in computer vision and robotics are characterized by probability distributions whose factor graph representations are sparse and whose factors are all Gaussian functions of error residuals. Under these conditions, maximum likelihood estimation corresponds to solving a sequence of sparse least-squares minimization problems in which additional summands are added to the objective function over time. In this paper we present Robust Incremental least-Squares Estimation (RISE), an incrementalized version of the Powell's Dog-Leg trust-region method suitable for use in online sparse least-squares minimization. As a trust-region method, Powell's Dog-Leg enjoys excellent global convergence properties, and is known to be considerably faster than both Gauss-Newton and Levenberg-Marquardt when applied to sparse least-squares problems. Consequently, RISE maintains the speed of current state-of-the-art incremental sparse least-squares methods while providing superior robustness to objective function nonlinearities.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-06-1-0043)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-10-1-0936)en_US
dc.description.sponsorshipUnited States. Air Force Research Laboratory (Contract FA8650-11-C-7137)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2012.6224646en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleAn incremental trust-region method for Robust online sparse least-squares estimationen_US
dc.typeArticleen_US
dc.identifier.citationRosen, David M., Michael Kaess, and John J. Leonard. “An incremental trust-region method for Robust online sparse least-squares estimation.” Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA) (2012): 1262–1269.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorRosen, David Matthew
dc.contributor.mitauthorKaess, Michael
dc.contributor.mitauthorLeonard, John Joseph
dc.relation.journalProceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsRosen, David M.; Kaess, Michael; Leonard, John J.en
dc.identifier.orcidhttps://orcid.org/0000-0002-8863-6550
dc.identifier.orcidhttps://orcid.org/0000-0001-8964-1602
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record