MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The thin-layer method in a cross-anisotropic 3-D space

Author(s)
Oliveira Barbosa, Joao Manuel de; Kausel, Eduardo A.
Thumbnail
DownloadTLM-3D_final.pdf (727.3Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
This article presents a generalization of the thin-layer method to three dimensions, a tool that allows assessing layered media subjected to loads eliciting nonsymmetrical wave fields. It is based on a formulation that fully couples the three components of motion, and allows finding effective solutions to either stationary or moving loads of arbitrary shape that act on (or within) horizontally layered media. In particular, it is an ideal tool for finding analytical solutions to the so-called 2.5D problem, which entails loads with arbitrary distribution in one horizontal coordinate direction together with a harmonic (sinusoidal) variation in the other. Inasmuch as the Green's functions for the latter case are found explicitly in the spatial domain without recourse to numerical integration, it allows using such functions — most likely in the context of the boundary element method — as fundamental solutions for problems of soil–structure interaction where the structure is invariant in one horizontal direction, such as a railroad track resting on an embankment. The method entails solving at each frequency of interest two uncoupled eigenvalue problems for generalized SH and SVP waves (i.e. horizontally and vertically polarized shear and pressure waves), after which the fundamental solutions are obtained in closed-form at any desired point in space. Inasmuch as the proposed technique dispenses with at least one of the two inverse Fourier transforms into the spatial domain, in due time the methodology presented is likely to become the preferred tool for a wide class of problems. The technique is first benchmarked against the known solution for a point load and then applied to a rectangular and triangular load distribution. Copyright © 2011 John Wiley & Sons, Ltd.
Date issued
2011-08
URI
http://hdl.handle.net/1721.1/78903
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
International Journal for Numerical Methods in Engineering
Publisher
Wiley Blackwell
Citation
Oliveira Barbosa, João Manuel, and Eduardo Kausel. “The Thin-layer Method in a Cross-anisotropic 3D Space.” International Journal for Numerical Methods in Engineering 89.5 (2012): 537–560.
Version: Author's final manuscript
ISSN
0029-5981
1097-0207

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.