Show simple item record

dc.contributor.authorKessler, Sean Herbert
dc.contributor.authorNah, Theodora
dc.contributor.authorDaumit, Kelly Elizabeth
dc.contributor.authorSmith, Jared D.
dc.contributor.authorLeone, Stephen R.
dc.contributor.authorKolb, Charles E.
dc.contributor.authorWorsnop, Douglas R.
dc.contributor.authorWilson, Kevin R.
dc.contributor.authorKroll, Jesse
dc.date.accessioned2013-05-15T20:11:11Z
dc.date.available2013-05-15T20:11:11Z
dc.date.issued2012-04
dc.date.submitted2012-03
dc.identifier.issn1089-5639
dc.identifier.issn1520-5215
dc.identifier.urihttp://hdl.handle.net/1721.1/78904
dc.description.abstractThe oxidative evolution (“aging”) of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter but remains poorly understood, particularly for the most oxidized fraction of the aerosol. Here we measure the kinetics and products of the heterogeneous oxidation of highly oxidized organic aerosol, with an aim of better constraining such atmospheric aging processes. Submicrometer particles composed of model oxidized organics—1,2,3,4-butanetetracarboxylic acid (C[subscript 8]H[subscript 10]O[subscript 8]), citric acid (C[subscript 6]H[subscript 8]O[subscript 7]), tartaric acid (C[subscript 4]H[subscript 6]O[subscript 6]), and Suwannee River fulvic acid—were oxidized by gas-phase OH in a flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to our previous studies of less-oxidized model systems (squalane, erythritol, and levoglucosan), particle mass did not decrease significantly with heterogeneous oxidation. Carbon content of the aerosol always decreased somewhat, but this mass loss was approximately balanced by an increase in oxygen content. The estimated reactive uptake coefficients of the reactions range from 0.37 to 0.51 and indicate that such transformations occur at rates corresponding to 1–2 weeks in the atmosphere, suggesting their importance in the atmospheric lifecycle of organic particulate matter.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CHE-101280)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant AGS-1056225)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Contract DE-AC02-05CH11231)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/jp212131men_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceProf. Krollen_US
dc.titleOH-Initiated Heterogeneous Aging of Highly Oxidized Organic Aerosolen_US
dc.typeArticleen_US
dc.identifier.citationKausel, Eduardo. “Number and Location of Zero-group-velocity Modes.” The Journal of the Acoustical Society of America 131.5 (2012): 3601.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.approverKroll, Jesse
dc.contributor.mitauthorKessler, Sean Herbert
dc.contributor.mitauthorDaumit, Kelly Elizabeth
dc.contributor.mitauthorKroll, Jesse
dc.relation.journalJournal of Physical Chemistry Aen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKessler, Sean H.; Nah, Theodora; Daumit, Kelly E.; Smith, Jared D.; Leone, Stephen R.; Kolb, Charles E.; Worsnop, Douglas R.; Wilson, Kevin R.; Kroll, Jesse H.en
dc.identifier.orcidhttps://orcid.org/0000-0002-6275-521X
dc.identifier.orcidhttps://orcid.org/0000-0003-1627-5618
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record