MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Complex frequencies in elastodynamics, with application to the Damping-Solvent Extraction method

Author(s)
Kausel, Eduardo A.
Thumbnail
DownloadComplex frequencies.pdf (427.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
This paper addresses the use of complex frequencies in problems of wave propagation and structural vibrations. The most common form of application is as artificial damping that is extracted after the response in the time domain has been obtained. Then again a rather unorthodox application is in the simulation of systems of infinite spatial extent by means of finite systems modeled with discrete methods such as finite elements, a task that can be accomplished even when no transmitting or absorbing boundaries are used. This latter application of complex frequencies, which goes by the name damping-solvent extraction method or its acronym DSE, is assessed herein by means of exact solutions to canonical problems that are used to establish the conditions that must be met by the finite models to work as intended, especially the size of the models, the magnitude of the imaginary component of frequency, and the limitations of the method.
Date issued
2009-10
URI
http://hdl.handle.net/1721.1/78905
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Journal of Engineering Mechanics
Publisher
American Society of Civil Engineers (ASCE)
Citation
Kausel, Eduardo. “Complex Frequencies in Elastodynamics, with Application to the Damping-Solvent Extraction Method.” Journal of Engineering Mechanics 136.5 (2010): 641–652.
Version: Author's final manuscript
ISSN
0733-9399

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.