Show simple item record

dc.contributor.authorSlocum, Alexander H.
dc.contributor.authorFennell, Gregory E.
dc.contributor.authorDundar, Gokhan
dc.contributor.authorHodder, Brian
dc.contributor.authorMeredith, James D. C.
dc.contributor.authorSager, Monique A.
dc.date.accessioned2013-05-23T19:20:01Z
dc.date.available2013-05-23T19:20:01Z
dc.date.issued2013-03
dc.date.submitted2012-10
dc.identifier.issn0018-9219
dc.identifier.otherINSPEC Accession Number: 13370104
dc.identifier.urihttp://hdl.handle.net/1721.1/78934
dc.description.abstractDue to its higher capacity factor and proximity to densely populated areas, offshore wind power with integrated energy storage could satisfy > 20% of U.S. electricity demand. Similar results could also be obtained in many parts of the world. The offshore environment can be used for unobtrusive, safe, and economical utility-scale energy storage by taking advantage of the hydrostatic pressure at ocean depths to store energy by pumping water out of concrete spheres and later allowing it to flow back in through a turbine to generate electricity. The storage spheres are an ideal complement to energy harvesting machines, such as floating wind turbines (FWTs). The system could provide near-base-load-quality utility-scale renewable energy and do double duty as the anchoring point for the generation platforms. Analysis indicates that storage can be economically feasible at depths as shallow as 200 m, with cost per megawatt hour of storage dropping until 1500 m before beginning to trend upward. The sweet spot occurs when the concrete wall thickness to withstand the hydrostatic pressure provides enough ballast mass, and this will depend on the strength of used concrete and reinforcement. In addition, the required concrete would use significant amounts of fly ash from coal-fired power plants, and the spheres can serve as artificial reefs.en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Energy Initiativeen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/JPROC.2013.2242411en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceProf. Slocum via Angie Locknaren_US
dc.titleOcean Renewable Energy Storage (ORES) System: Analysis of an Undersea Energy Storage Concepten_US
dc.typeArticleen_US
dc.identifier.citationSlocum, Alexander H., Gregory E. Fennell, Gökhan Dundar, et al. 2013. "Ocean Renewable Energy Storage (ORES) System: Analysis of an Undersea Energy Storage Concept." Proceedings of the IEEE 101(4): 906–924.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverSlocum, Alexander H.en_US
dc.contributor.mitauthorSlocum, Alexander H.en_US
dc.contributor.mitauthorDundar, Gokhanen_US
dc.contributor.mitauthorHodder, Brianen_US
dc.contributor.mitauthorMeredith, James D. C.en_US
dc.relation.journalProceedings of the IEEEen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsSlocum, A. H.; Fennell, G. E.; Dundar, G.; Hodder, B. G.; Meredith, J. D. C.; Sager, M. A.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5048-4109
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record