Show simple item record

dc.contributor.authorPlata, Desiree Louise
dc.contributor.authorReddy, Christopher M.
dc.contributor.authorGschwend, Philip M.
dc.date.accessioned2013-05-23T19:38:18Z
dc.date.available2013-05-23T19:38:18Z
dc.date.issued2012-01
dc.identifier.issn0013-936X
dc.identifier.issn1520-5851
dc.identifier.urihttp://hdl.handle.net/1721.1/78935
dc.description.abstractIn spite of the growth of the carbon nanotube (CNT) industry, there are no established analytical methods with which to detect or quantify CNTs in environmental matrices. Given that CNTs have relatively high thermal stabilities, we investigated the use of thermal techniques to isolate and quantify single wall carbon nanotubes (SWCNTs). Test materials included ten types of commercial SWCNTs, representative biological macromolecules (bovine serum albumin and methylcellulose), soot, natural coastal sediments, and SWCNT-amended sediments. Different SWCNTs exhibited widely diverse degradation temperatures, and thermal analytical methods may require SWCNT-type specific parameters. To improve quantification capabilities, evolved gases were monitored by mass spectrometry. SWCNTs produced diagnostic ion ratios reflective of their high carbon and low hydrogen and oxygen contents. Current detection limits are roughly 4 μgSWCNT per sample (e.g., 100 μgSWCNT g–1sediment and 40 mg sample), controlled by interfering ions associated with the instrument’s non-airtight design. Although future modifications could improve this limitation, the current method is sufficient for quantifying SWCNTs in laboratories and industrial sites where SWCNTs are handled. Furthermore, the method shows promise to distinguish between incidental (e.g., soot) and engineered (e.g., SWCNTs) nanoparticles, which is not possible with current state-of-the-art techniques.en_US
dc.description.sponsorshipChesonis Family Foundationen_US
dc.description.sponsorshipMassachusetts Institute of Technology (Martin Family Society of Fellows for Sustainability)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Institute for Soldier Nanotechnologiesen_US
dc.language.isoen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/es203198xen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceProf. Gschwend via Anne Grahamen_US
dc.titleThermogravimetry-Mass Spectrometry for Carbon Nanotube Detection in Complex Mixturesen_US
dc.typeArticleen_US
dc.identifier.citationPlata, Desirée L., Christopher M. Reddy, and Philip M. Gschwend. 2012. "Thermogravimetry–Mass Spectrometry for Carbon Nanotube Detection in Complex Mixtures." Environmental Science & Technology 46 (22): 12254–12261.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.approverGschwend, Philip M.en_US
dc.contributor.mitauthorGschwend, Philip M.en_US
dc.contributor.mitauthorPlata, Desiree Louiseen_US
dc.relation.journalEnvironmental Science & Technologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsPlata, Desirée L.; Reddy, Christopher M.; Gschwend, Philip M.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9497-4492
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record