Show simple item record

dc.contributor.authorDhiman, Rajeeven_US
dc.contributor.authorAnand, Sushanten_US
dc.contributor.authorReza-Garduno, Ernestoen_US
dc.contributor.authorCohen, Robert E.en_US
dc.contributor.authorMcKinley, Gareth H.en_US
dc.contributor.authorVaranasi, Kripa Ken_US
dc.contributor.authorSmith, Jonathan David, S.M. Massachusetts Institute of Technologyen_US
dc.date.accessioned2013-06-06T14:48:02Z
dc.date.available2013-06-06T14:48:02Z
dc.date.issued2012-12
dc.date.submitted2012-09
dc.identifier.issn1744-683X
dc.identifier.issn1744-6848
dc.identifier.urihttp://hdl.handle.net/1721.1/79068
dc.description.abstractNon-wetting surfaces containing micro/nanotextures impregnated with lubricating liquids have recently been shown to exhibit superior non-wetting performance compared to superhydrophobic surfaces that rely on stable air–liquid interfaces. Here we examine the fundamental physico-chemical hydrodynamics that arise when droplets, immiscible with the lubricant, are placed on and allowed to move along these surfaces. We find that these four-phase systems show novel contact line morphology comprising a finite annular ridge of the lubricant pulled above the surface texture and consequently as many as three distinct 3-phase contact lines. We show that these distinct morphologies not only govern the contact line pinning that controls droplets' initial resistance to movement but also the level of viscous dissipation and hence their sliding velocity once the droplets begin to move.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Young Faculty Awarden_US
dc.description.sponsorshipMassachusetts Institute of Technology. Energy Initiativeen_US
dc.description.sponsorshipNational Science Foundation (U.S.). CAREER Award (0952564)en_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistry, Theen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/C2SM27032Cen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleDroplet mobility on lubricant-impregnated surfacesen_US
dc.typeArticleen_US
dc.identifier.citationSmith, J. David et al. “Droplet Mobility on Lubricant-impregnated Surfaces.” Soft Matter 9.6 (2013): 1772.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Manufacturing and Productivityen_US
dc.contributor.departmentMassachusetts Institute of Technology. School of Engineeringen_US
dc.contributor.mitauthorSmith, Jonathan Daviden_US
dc.contributor.mitauthorDhiman, Rajeeven_US
dc.contributor.mitauthorAnand, Sushanten_US
dc.contributor.mitauthorReza-Garduno, Ernestoen_US
dc.contributor.mitauthorCohen, Robert E.en_US
dc.contributor.mitauthorMcKinley, Gareth H.en_US
dc.contributor.mitauthorVaranasi, Kripa K.en_US
dc.relation.journalSoft Matteren_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSmith, J. David; Dhiman, Rajeev; Anand, Sushant; Reza-Garduno, Ernesto; Cohen, Robert E.; McKinley, Gareth H.; Varanasi, Kripa K.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6846-152X
dc.identifier.orcidhttps://orcid.org/0000-0002-1480-1840
dc.identifier.orcidhttps://orcid.org/0000-0001-8323-2779
dc.identifier.orcidhttps://orcid.org/0000-0003-1085-7692
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record