Show simple item record

dc.contributor.authorJaishankar, Aditya
dc.contributor.authorSharma, Vivek
dc.contributor.authorMcKinley, Gareth H
dc.date.accessioned2013-06-17T15:20:34Z
dc.date.available2013-06-17T15:20:34Z
dc.date.issued2011-08
dc.date.submitted2011-04
dc.identifier.issn1744-683X
dc.identifier.issn1744-6848
dc.identifier.urihttp://hdl.handle.net/1721.1/79125
dc.description.abstractProtein–surfactant mixtures arise in many industrial and biological systems, and indeed, blood itself is a mixture of serum albumins along with various other surface-active components. Bovine serum albumin (BSA) solutions, and globular proteins in general, exhibit an apparent yield stress in bulk rheological measurements at surprisingly low concentrations. By contrasting interfacial rheological measurements with corresponding interface-free data obtained using a microfluidic rheometer, we show that the apparent yield stress exhibited by these solutions arises from the presence of a viscoelastic layer formed due to the adsorption of protein molecules at the air–water interface. The coupling between instrument inertia and surface elasticity in a controlled stress device also results in a distinctive damped oscillatory strain response during creep experiments known as“creep ringing”. We show that this response can be exploited to extract the interfacial storage and loss moduli of the protein interface. The interfacial creep response at small strains can be described by a simple second order system, such as the linear Jeffreys model, however the interfacial response rapidly becomes nonlinear beyond strains of order 1%. We use the two complementary techniques of interfacial rheometry and microfluidic rheometry to examine the systematic changes in the surface and bulk material functions for mixtures of a common non-ionic surfactant, polysorbate 80, and BSA. It is observed that the nonlinear viscoelastic properties of the interface are significantly suppressed by the presence of even a relatively small amount of surfactant (c[subscript surf] > 10[superscript −3] wt.%). Preferential interfacial adsorption of the mobile surfactant at these surfactant concentrations results in complete elimination of the bulk apparent yield stress exhibited by surfactant-free BSA solutions.en_US
dc.description.sponsorshipAkzo Nobel (Firm)en_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistry, Theen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c1sm05399jen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleInterfacial viscoelasticity, yielding and creep ringing of globular protein–surfactant mixturesen_US
dc.typeArticleen_US
dc.identifier.citationJaishankar, Aditya, Vivek Sharma, and Gareth H. McKinley. Interfacial Viscoelasticity, Yielding and Creep Ringing of Globular Protein–surfactant Mixtures. Soft Matter 7(17): 7623. 2011.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Hatsopoulos Microfluids Laboratoryen_US
dc.contributor.mitauthorMcKinley, Gareth H.en_US
dc.contributor.mitauthorJaishankar, Adityaen_US
dc.contributor.mitauthorSharma, Viveken_US
dc.relation.journalSoft Matteren_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsJaishankar, Aditya; Sharma, Vivek; McKinley, Gareth H.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1152-1285
dc.identifier.orcidhttps://orcid.org/0000-0001-8323-2779
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record