MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detection of single-molecule H₂O₂ signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes

Author(s)
Jin, Hong; Heller, Daniel A.; Kalbacova, Marie; Kim, Jong-Ho; Zhang, Jingqing; Boghossian, Ardemis A.; Maheshri, Narendra; Strano, Michael S.; ... Show more Show less
Thumbnail
DownloadStrano_Detection single-molecule.pdf (1.043Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
An emerging concept in cell signalling is the natural role of reactive oxygen species such as hydrogen peroxide (H₂O₂) as beneficial messengers in redox signalling pathways. The nature of H₂O₂ signalling is confounded, however, by difficulties in tracking it in living systems, both spatially and temporally, at low concentrations. Here, we develop an array of fluorescent single-walled carbon nanotubes that can selectively record, in real time, the discrete, stochastic quenching events that occur as H₂O₂molecules are emitted from individual human epidermal carcinoma cells stimulated by epidermal growth factor. We show mathematically that such arrays can distinguish between molecules originating locally on the cell membrane from other contributions. We find that epidermal growth factor induces 2 nmol H₂O₂ locally over a period of 50 min. This platform promises a new approach to understanding the signalling of reactive oxygen species at the cellular level.
Date issued
2010-03
URI
http://hdl.handle.net/1721.1/79353
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Nature Nanotechnology
Publisher
Nature Publishing Group
Citation
Jin, Hong, Daniel A. Heller, Marie Kalbacova, Jong-Ho Kim, Jingqing Zhang, Ardemis A. Boghossian, Narendra Maheshri, and Michael S. Strano. Detection of Single-molecule H₂O₂ Signalling from Epidermal Growth Factor Receptor Using Fluorescent Single-walled Carbon Nanotubes. Nature Nanotechnology 5, no. 4 (March 7, 2010): 302-309.
Version: Original manuscript
ISSN
1748-3387
1748-3395

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.