Detection of single-molecule H₂O₂ signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes
Author(s)
Jin, Hong; Heller, Daniel A.; Kalbacova, Marie; Kim, Jong-Ho; Zhang, Jingqing; Boghossian, Ardemis A.; Maheshri, Narendra; Strano, Michael S.; ... Show more Show less
DownloadStrano_Detection single-molecule.pdf (1.043Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
An emerging concept in cell signalling is the natural role of reactive oxygen species such as hydrogen peroxide (H₂O₂) as beneficial messengers in redox signalling pathways. The nature of H₂O₂ signalling is confounded, however, by difficulties in tracking it in living systems, both spatially and temporally, at low concentrations. Here, we develop an array of fluorescent single-walled carbon nanotubes that can selectively record, in real time, the discrete, stochastic quenching events that occur as H₂O₂molecules are emitted from individual human epidermal carcinoma cells stimulated by epidermal growth factor. We show mathematically that such arrays can distinguish between molecules originating locally on the cell membrane from other contributions. We find that epidermal growth factor induces 2 nmol H₂O₂ locally over a period of 50 min. This platform promises a new approach to understanding the signalling of reactive oxygen species at the cellular level.
Date issued
2010-03Department
Massachusetts Institute of Technology. Department of Chemical EngineeringJournal
Nature Nanotechnology
Publisher
Nature Publishing Group
Citation
Jin, Hong, Daniel A. Heller, Marie Kalbacova, Jong-Ho Kim, Jingqing Zhang, Ardemis A. Boghossian, Narendra Maheshri, and Michael S. Strano. Detection of Single-molecule H₂O₂ Signalling from Epidermal Growth Factor Receptor Using Fluorescent Single-walled Carbon Nanotubes. Nature Nanotechnology 5, no. 4 (March 7, 2010): 302-309.
Version: Original manuscript
ISSN
1748-3387
1748-3395