Show simple item record

dc.contributor.authorTekin, Halil
dc.contributor.authorSanchez, Jefferson G.
dc.contributor.authorJones, Brianna J.
dc.contributor.authorCamci-Unal, Gulden
dc.contributor.authorNichol, Jason W.
dc.contributor.authorKhademhosseini, Ali
dc.contributor.authorTsinman, Tonia
dc.contributor.authorLanger, Robert S
dc.date.accessioned2013-06-20T20:31:50Z
dc.date.available2013-06-20T20:31:50Z
dc.date.issued2011-07
dc.date.submitted2011-05
dc.identifier.issn0002-7863
dc.identifier.issn1520-5126
dc.identifier.urihttp://hdl.handle.net/1721.1/79360
dc.description.abstractMicroscale hydrogels have been shown to be beneficial for various applications such as tissue engineering and drug delivery. A key aspect in these applications is the spatial organization of biological entities or chemical compounds within hydrogel microstructures. For this purpose, sequentially patterned microgels can be used to spatially organize either living materials to mimic biological complexity or multiple chemicals to design functional microparticles for drug delivery. Photolithographic methods are the most common way to pattern microscale hydrogels but are limited to photocrosslinkable polymers. So far, conventional micromolding approaches use static molds to fabricate structures, limiting the resulting shapes that can be generated. Herein, we describe a dynamic micromolding technique to fabricate sequentially patterned hydrogel microstructures by exploiting the thermoresponsiveness of poly(N-isopropylacrylamide)-based micromolds. These responsive micromolds exhibited shape changes under temperature variations, facilitating the sequential molding of microgels at two different temperatures. We fabricated multicompartmental striped, cylindrical, and cubic microgels that encapsulated fluorescent polymer microspheres or different cell types. These responsive micromolds can be used to immobilize living materials or chemicals into sequentially patterned hydrogel microstructures which may potentially be useful for a range of applications at the interface of chemistry, materials science and engineering, and biology.en_US
dc.description.sponsorshipUnited States. Army Research Office (Institute for Soldier Nanotechnologies at MIT, project DAAD-19-02-D-002)en_US
dc.description.sponsorshipUnited States. Office of Naval Researchen_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (DE013023)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (DE016516)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (HL092836)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (DE019024)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (EB012597)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (AR057837)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (DE021468)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (HL099073)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/ja204266aen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleResponsive Micromolds for Sequential Patterning of Hydrogel Microstructuresen_US
dc.typeArticleen_US
dc.identifier.citationTekin, Halil, Tonia Tsinman, Jefferson G. Sanchez, et al. 2011. Responsive Micromolds for Sequential Patterning of Hydrogel Microstructures. Journal of the American Chemical Society 133(33): 12944–12947.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorTekin, Halilen_US
dc.contributor.mitauthorTsinman, Tonia K.en_US
dc.contributor.mitauthorSanchez, Jefferson G.en_US
dc.contributor.mitauthorJones, Brianna J.en_US
dc.contributor.mitauthorCamci-Unal, Guldenen_US
dc.contributor.mitauthorNichol, Jason W.en_US
dc.contributor.mitauthorLanger, Roberten_US
dc.contributor.mitauthorKhademhosseini, Alien_US
dc.relation.journalJournal of the American Chemical Societyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsTekin, Halil; Tsinman, Tonia; Sanchez, Jefferson G.; Jones, Brianna J.; Camci-Unal, Gulden; Nichol, Jason W.; Langer, Robert; Khademhosseini, Alien_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record