Show simple item record

dc.contributor.authorJohnson, Matthew James
dc.contributor.authorWillsky, Alan S
dc.date.accessioned2013-07-22T14:01:16Z
dc.date.available2013-07-22T14:01:16Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/1721.1/79638
dc.description.abstractThere is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM) as a natural Bayesian nonparametric extension of the traditional HMM. However, in many settings the HDP-HMM's strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can extend the HDP-HMM to capture such structure by drawing upon explicit-duration semi- Markovianity, which has been developed in the parametric setting to allow construction of highly interpretable models that admit natural prior information on state durations. In this paper we introduce the explicitduration HDP-HSMM and develop posterior sampling algorithms for efficient inference in both the direct-assignment and weak-limit approximation settings. We demonstrate the utility of the model and our inference methods on synthetic data as well as experiments on a speaker diarization problem and an example of learning the patterns in Morse code.en_US
dc.language.isoen_US
dc.publisherAssociation for Uncertainty in Artificial Intelligence (AUAI)en_US
dc.relation.isversionofhttp://event.cwi.nl/uai2010/papers/UAI2010_0193.pdfen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceWillsky via Amy Stouten_US
dc.titleThe Hierarchical Dirichlet Process Hidden Semi-Markov Modelen_US
dc.typeArticleen_US
dc.identifier.citationMatthew Johnson and Alan Willsky. "The Hierarchical Dirichlet Process Hidden Semi-Markov Model", Proceedings of the Twenty-Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-10), AUAI Press (2010): 252-259.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorJohnson, Matthew Jamesen_US
dc.contributor.mitauthorWillsky, Alan S.en_US
dc.relation.journalProceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI2010)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsJohnson, Matthew James; Willsky, Alan S.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0149-5888
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record