MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generic Mechanism of Optimal Energy Transfer Efficiency: A Scaling Theory of the Mean First-Passage Time in Exciton Systems

Author(s)
Wu, Jianlan; Silbey, Robert J.; Cao, Jianshu
Thumbnail
DownloadWu-2013-Generic mechanism of optimal energy transfer efficiency.pdf (462.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
An asymptotic scaling theory is presented using the conceptual basis of trapping-free subspace (i.e., orthogonal subspace) to establish the generic mechanism of optimal efficiency of excitation energy transfer in light-harvesting systems. A quantum state orthogonal to the trap will exhibit noise-assisted transfer, clarifying the significance of initial preparation. For such an initial state, the efficiency is enhanced in the weak damping limit (⟨t⟩∼1/Γ), and suppressed in the strong damping limit (⟨t⟩∼Γ), analogous to Kramers turnover in classical rate theory. An interpolating expression ⟨t⟩=A/Γ+B+CΓ quantitatively describes the trapping time over the entire range of the dissipation strength, and predicts the optimal efficiency at Γ[subscript opt]∼J for homogenous systems. In the presence of static disorder, the scaling law of transfer time with respect to dephasing rate changes from linear to square root, suggesting a weaker dependence on the environment. The prediction of the scaling theory is verified in a symmetric dendrimer system by numerically exact quantum calculations. Though formulated in the context of excitation energy transfer, the analysis and conclusions apply in general to open quantum processes, including electron transfer, fluorescence emission, and heat conduction.
Date issued
2013-05
URI
http://hdl.handle.net/1721.1/79649
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Wu, Jianlan, Robert J. Silbey, and Jianshu Cao. Generic Mechanism of Optimal Energy Transfer Efficiency: A Scaling Theory of the Mean First-Passage Time in Exciton Systems. Physical Review Letters 110, no. 20 (May 2013). © 2013 American Physical Society
Version: Final published version
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.