Show simple item record

dc.contributor.authorChiang, Yet-Ming
dc.contributor.authorCarter, W. Craig
dc.contributor.authorWoodford, William Henry
dc.date.accessioned2013-07-25T13:37:26Z
dc.date.available2013-07-25T13:37:26Z
dc.date.issued2010-08
dc.date.submitted2010-06
dc.identifier.issn00134651
dc.identifier.issn1945-7111
dc.identifier.urihttp://hdl.handle.net/1721.1/79696
dc.description.abstractFracture of electrode particles due to diffusion-induced stress has been implicated as a possible mechanism for capacity fade and impedance growth in lithium-ion batteries. In brittle materials, including many lithium intercalation materials, knowledge of the stress profile is necessary but insufficient to predict fracture events. We derive a fracture mechanics failure criterion for individual electrode particles and demonstrate its utility with a model system, galvanostatic charging of Li[subscript x]Mn[subscript 2]O[subscript 4]. Fracture mechanics predicts a critical C-rate above which active particles fracture; this critical C-rate decreases with increasing particle size. We produce an electrochemical shock map, a graphical tool that shows regimes of failure depending on C-rate, particle size, and the material’s inherent fracture toughness K[subscript Ic] . Fracture dynamics are sensitive to the gradient of diffusion-induced stresses at the crack tip; as a consequence, small initial flaws grow unstably and are therefore potentially more damaging than larger initial flaws, which grow stably.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (Award DE-SC0002633)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Programen_US
dc.language.isoen_US
dc.publisherThe Electrochemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1149/1.3464773en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.title“Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysisen_US
dc.typeArticleen_US
dc.identifier.citationWoodford, William H., Yet-Ming Chiang, and W. Craig Carter. “Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis. Journal of The Electrochemical Society 157, no. 10 (2010): A1052. © 2010 ECS - The Electrochemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorWoodford, William Henryen_US
dc.contributor.mitauthorChiang, Yet-Mingen_US
dc.contributor.mitauthorCarter, W. Craigen_US
dc.relation.journalJournal of The Electrochemical Societyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWoodford, William H.; Chiang, Yet-Ming; Carter, W. Craigen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7564-7173
dc.identifier.orcidhttps://orcid.org/0000-0002-0833-7674
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record