Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media
Author(s)
Lobovsky, Maxim B.; Keating, Steven John; Setapen, Adam M.; Gero, Katy I.; Hosoi, Anette E.; Iagnemma, Karl; Cheng, Nadia Gen San; ... Show more Show less
DownloadHosoi_Design and analysis.pdf (1.272Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Hyper-redundant manipulators can be fragile, expensive, and limited in their flexibility due to the distributed and bulky actuators that are typically used to achieve the precision and degrees of freedom (DOFs) required. Here, a manipulator is proposed that is robust, high-force, low-cost, and highly articulated without employing traditional actuators mounted at the manipulator joints. Rather, local tunable stiffness is coupled with off-board spooler motors and tension cables to achieve complex manipulator configurations. Tunable stiffness is achieved by reversible jamming of granular media, which-by applying a vacuum to enclosed grains-causes the grains to transition between solid-like states and liquid-like ones. Experimental studies were conducted to identify grains with high strength-to-weight performance. A prototype of the manipulator is presented with performance analysis, with emphasis on speed, strength, and articulation. This novel design for a manipulator-and use of jamming for robotic applications in general-could greatly benefit applications such as human-safe robotics and systems in which robots need to exhibit high flexibility to conform to their environments.
Date issued
2012-05Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Laboratory for Manufacturing and ProductivityJournal
IEEE International Conference on Robotics and Automation (ICRA), 2012
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Cheng, Nadia G., Maxim B. Lobovsky, Steven J. Keating, et al. Design and Analysis of a Robust, Low-cost, Highly Articulated Manipulator Enabled by Jamming of Granular Media. In Pp. 4328–4333. 2012, IEEE.
Version: Author's final manuscript
ISBN
978-1-4673-1404-6
978-1-4673-1403-9
ISSN
1050-4729