MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media

Author(s)
Lobovsky, Maxim B.; Keating, Steven John; Setapen, Adam M.; Gero, Katy I.; Hosoi, Anette E.; Iagnemma, Karl; Cheng, Nadia Gen San; ... Show more Show less
Thumbnail
DownloadHosoi_Design and analysis.pdf (1.272Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Hyper-redundant manipulators can be fragile, expensive, and limited in their flexibility due to the distributed and bulky actuators that are typically used to achieve the precision and degrees of freedom (DOFs) required. Here, a manipulator is proposed that is robust, high-force, low-cost, and highly articulated without employing traditional actuators mounted at the manipulator joints. Rather, local tunable stiffness is coupled with off-board spooler motors and tension cables to achieve complex manipulator configurations. Tunable stiffness is achieved by reversible jamming of granular media, which-by applying a vacuum to enclosed grains-causes the grains to transition between solid-like states and liquid-like ones. Experimental studies were conducted to identify grains with high strength-to-weight performance. A prototype of the manipulator is presented with performance analysis, with emphasis on speed, strength, and articulation. This novel design for a manipulator-and use of jamming for robotic applications in general-could greatly benefit applications such as human-safe robotics and systems in which robots need to exhibit high flexibility to conform to their environments.
Date issued
2012-05
URI
http://hdl.handle.net/1721.1/79716
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Laboratory for Manufacturing and Productivity
Journal
IEEE International Conference on Robotics and Automation (ICRA), 2012
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Cheng, Nadia G., Maxim B. Lobovsky, Steven J. Keating, et al. Design and Analysis of a Robust, Low-cost, Highly Articulated Manipulator Enabled by Jamming of Granular Media. In Pp. 4328–4333. 2012, IEEE.
Version: Author's final manuscript
ISBN
978-1-4673-1404-6
978-1-4673-1403-9
ISSN
1050-4729

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.