Amorphous InSb and InAs[subscript 0.3]Sb[subscript 0.7] for long wavelength infrared detection
Author(s)
Zens, Timothy; Becla, Piotr; Kimerling, Lionel C.; Drehman, Alvin; Agarwal, Anuradha Murthy
DownloadKimerling_Amorphous insb.pdf (333.3Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
The structural, electronic, and optical properties of amorphous InSb and InAs[subscript 0.3]Sb[subscript 0.7] films deposited on Corning glass, Al[subscript 2]O[subscript 3] CdZnTe, SiO[subscript 2]-Si, and CaF2 substrates by Radio Frequency (RF) magnetron sputtering have been studied as they relate to Mid and Long Wavelength Infrared (MWIR and LWIR) detection. Depositions at elevated substrate temperature and pressure of <10mTorr Ar show an emergence of crystalline grains with strong X-ray diffraction peaks at the (111) and (220) orientations. Electronically the amorphous InSb and InAs[subscript 0.3]Sb[subscript 0.7] films deposited at 300K show hopping conduction with resistance in InSb ranging from 44 to 1.1E8 Ω-cm at 300K and 84K respectively. Optical analysis using Fourier transform infrared spectroscopy (FTIR) show the absorption of these films has an absorption tail, the equation of which differing activation energies in InSb and InAs0.3Sb0.7. Amorphous InSb and InAs[subscript 0.3]Sb[subscript 0.7] films showed thermal responsivity in excess of 100V/W for 6μm thick films held at 233K. The maxima and minima of the responsivity are shown to correspond to the interference fringes in the film. The response is highly substrate dependent and compares favorably to other thermal detectors.
Date issued
2011-05Department
MIT Materials Research Laboratory; Massachusetts Institute of Technology. Microphotonics CenterJournal
Proceedings of SPIE--the International Society for Optical Engineering; v. 8012
Publisher
SPIE
Citation
Zens, Timothy, Piotr Becla, Anuradha M. Agarwal, Lionel C. Kimerling, and Alvin Drehman. “Amorphous InSb and InAs[subscript 0.3]Sb[subscript 0.7] for long wavelength infrared detection.” In Infrared Technology and Applications XXXVII, edited by Bjørn F. Andresen, Gabor F. Fulop, and Paul R. Norton, 80123Y-80123Y-8. SPIE - International Society for Optical Engineering, 2011. © (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Version: Final published version
ISSN
0277-786X