Show simple item record

dc.contributor.authorNim, Tri Hieu
dc.contributor.authorWhite, Jacob K.
dc.contributor.authorTucker-Kellogg, Lisa
dc.date.accessioned2013-08-01T13:28:16Z
dc.date.available2013-08-01T13:28:16Z
dc.date.issued2013-06
dc.date.submitted2013-04
dc.identifier.issn0305-1048
dc.identifier.issn1362-4962
dc.identifier.urihttp://hdl.handle.net/1721.1/79751
dc.description.abstractCell signaling pathways and metabolic networks are often modeled using ordinary differential equations (ODEs) to represent the production/consumption of molecular species over time. Regardless whether a model is built de novo or adapted from previous models, there is a need to estimate kinetic rate constants based on time-series experimental measurements of molecular abundance. For data-rich cases such as proteomic measurements of all species, spline-based parameter estimation algorithms have been developed to avoid solving all the ODEs explicitly. We report the development of a web server for a spline-based method. Systematic Parameter Estimation for Data-Rich Environments (SPEDRE) estimates reaction rates for biochemical networks. As input, it takes the connectivity of the network and the concentrations of the molecular species at discrete time points. SPEDRE is intended for large sparse networks, such as signaling cascades with many proteins but few reactions per protein. If data are available for all species in the network, it provides global coverage of the parameter space, at low resolution and with approximate accuracy. The output is an optimized value for each reaction rate parameter, accompanied by a range and bin plot. SPEDRE uses tools from COPASI for pre-processing and post-processing. SPEDRE is a free service at http://LTKLab.org/SPEDRE.en_US
dc.description.sponsorshipSingapore-MIT Alliance (IUP R-154-001-348-646)en_US
dc.language.isoen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/nar/gkt459en_US
dc.rightsCreative Commons Attribution Non-Commercialen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0en_US
dc.sourceOxford University Pressen_US
dc.titleSPEDRE: a web server for estimating rate parameters for cell signaling dynamics in data-rich environmentsen_US
dc.typeArticleen_US
dc.identifier.citationNim, T. H., J. K. White, and L. Tucker-Kellogg. “SPEDRE: a Web Server for Estimating Rate Parameters for Cell Signaling Dynamics in Data-rich Environments.” Nucleic Acids Research 41.W1 (2013): W187–W191.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentSingapore-MIT Alliance in Research and Technology (SMART)en_US
dc.contributor.mitauthorNim, Tri Hieuen_US
dc.contributor.mitauthorWhite, Jacob K.en_US
dc.contributor.mitauthorTucker-Kellogg, Lisaen_US
dc.relation.journalNucleic Acids Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsNim, T. H.; White, J. K.; Tucker-Kellogg, L.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1080-4005
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record