MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CDK-dependent phosphorylation and nuclear exclusion coordinately control kinetochore assembly state

Author(s)
Gascoigne, Karen E.; Cheeseman, Iain M
Thumbnail
DownloadGascoigne-2013-CDK-dependent phosph.pdf (3.391Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution Non-Commercial http://creativecommons.org/licenses/by-nc/3.0
Metadata
Show full item record
Abstract
Accurate chromosome segregation requires assembly of the multiprotein kinetochore complex. Prior work has identified more than 100 different kinetochore components in human cells. However, little is known about the regulatory processes that specify their assembly upon mitotic entry and disassembly at mitotic exit. In this paper, we used a live-cell imaging–based assay to quantify kinetochore disassembly kinetics and systematically analyze the role of potential regulatory mechanisms in controlling kinetochore assembly state. We find that kinetochore assembly and disassembly was driven primarily by mitotic phosphorylation downstream of cyclin-dependent kinase (CDK). In addition, we demonstrate that nuclear exclusion of the Ndc80 complex helped restrict kinetochore formation to mitosis. Combining constitutive CDK-dependent phosphorylation of CENP-T and forced nuclear localization of the Ndc80 complex partially prevented kinetochore disassembly at mitotic exit and led to chromosome segregation defects in subsequent divisions. In total, we find that the coordinated temporal regulation of outer kinetochore assembly is essential for accurate cell division.
Date issued
2013-03
URI
http://hdl.handle.net/1721.1/79752
Department
Massachusetts Institute of Technology. Department of Biology; Whitehead Institute for Biomedical Research
Journal
The Journal of Cell Biology
Publisher
Rockefeller University Press, The
Citation
Gascoigne, K. E., and I. M. Cheeseman. “CDK-dependent phosphorylation and nuclear exclusion coordinately control kinetochore assembly state.” The Journal of Cell Biology 201, no. 1 (April 1, 2013): 23-32.
Version: Final published version
ISSN
0021-9525
1540-8140

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.