Show simple item record

dc.contributor.authorEnright, Ryan
dc.contributor.authorMitchell, R.
dc.contributor.authorLv, C.
dc.contributor.authorMutha, Heena K.
dc.contributor.authorChristiansen, Michael Gary
dc.contributor.authorThompson, Carl V.
dc.contributor.authorWang, Evelyn N.
dc.date.accessioned2013-08-05T16:26:38Z
dc.date.available2013-08-05T16:26:38Z
dc.date.issued2012-04
dc.identifier.issn1946-4274
dc.identifier.urihttp://hdl.handle.net/1721.1/79782
dc.description.abstractUncertainty about future energy and water supplies suggests a pressing need to develop efficient technologies for water desalination. Capacitive deionization (CDI), a method that captures ions in the electrical double layer (EDL) of an electrochemical capacitor, is a promising technology that can potentially fulfill those requirements. Similar to supercapacitors, ideal CDI electrodes should have a large electrolyte-accessible specific surface area available for ion adsorption with rapid charging/discharging characteristics. Unlike supercapacitors, CDI electrodes are required to operate in aqueous electrolytes with low ionic concentrations in a non-linear charging regime. To explore this practically and theoretically important regime, we developed robust, electrochemically-compatible carbon nanotube (CNT) carpet electrodes that posses a well-defined and uniform pore structure that is more readily analyzed in comparison to the random and multi-scale pore structure of typical carbon electrodes. The fabricated electrodes were characterized using cyclic voltammetry and potentiostatic charging in aqueous NaCl solutions (n[subscript o] = 20 - 90 mM) using a three electrode setup. Examination of the CV and potentiostatically-measured capacitances were consistent with EDL behavior dictated by the Stern layer. However, some deviations from the expected behavior were observed with increasing salt concentration during potentiostatic testing.en_US
dc.description.sponsorshipCenter for Clean Water and Clean Energy at MIT and KFUPMen_US
dc.language.isoen_US
dc.publisherCambridge University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1557/opl.2012.707en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleDiffusion-bonded CNT carpets for fundamental CDI studiesen_US
dc.typeArticleen_US
dc.identifier.citationEnright, R., R. Mitchell, H. Mutha, C. Lv, M. Christiansen, C. V. Thompson, and E. N. Wang. “Diffusion-bonded CNT carpets for fundamental CDI studies.” MRS Proceedings 1407 (January 12, 2012). Copyright © Materials Research Society 2012en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorMitchell, R.en_US
dc.contributor.mitauthorEnright, Ryanen_US
dc.contributor.mitauthorMutha, Heena K.en_US
dc.contributor.mitauthorLv, C.en_US
dc.contributor.mitauthorChristiansen, Michael Garyen_US
dc.contributor.mitauthorThompson, Carl V.en_US
dc.contributor.mitauthorWang, Evelyn N.en_US
dc.relation.journalMRS Proceedingsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsEnright, R.; Mitchell, R.; Mutha, H.; Lv, C.; Christiansen, M.; Thompson, C. V.; Wang, E. N.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6420-1616
dc.identifier.orcidhttps://orcid.org/0000-0003-4891-5560
dc.identifier.orcidhttps://orcid.org/0000-0002-0121-8285
dc.identifier.orcidhttps://orcid.org/0000-0001-7045-1200
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record