Thermomechanical behavior at the nanoscale and size effects in shape memory alloys
Author(s)
San Juan, Jose; Schuh, Christopher A.; No, Maria L.
DownloadSchuh_Thermomechanical behavior.pdf (392.7Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Shape memory alloys (SMA) undergo reversible martensitic transformation in response to changes in temperature or applied stress, resulting in the properties of superelasticity and shape memory. At present, there is high scientific and technological interest to develop these properties at small scales and apply SMA as sensors and actuators in microelectromechanical system technologies. To study the thermomechanical properties of SMA at micro and nanoscales, instrumented nanoindentation is widely used to conduct nanopillar compression tests. By using this technique, superelasticity and shape memory at the nanoscale have been demonstrated in micro and nanopillars of Cu–Al–Ni SMA. However, the martensitic transformation seems to exhibit different behavior at small scales, and a size effect on superelasticity has been recently reported. In this study, we provide an overview of the thermomechanical properties of Cu–Al–Ni SMA at the nanoscale, with special emphasis on size effects. Finally, these size effects are discussed in light of the microscopic mechanisms controlling the martensitic transformation at the nanoscale.
Date issued
2011-10Department
Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Journal of Materials Research
Publisher
Cambridge University Press (Materials Research Society)
Citation
San Juan, Jose, Maria L. Nó, and Christopher A. Schuh. “Thermomechanical behavior at the nanoscale and size effects in shape memory alloys.” Journal of Materials Research 26, no. 19 (October 10, 2011): 2461-2469. © Materials Research Society 2011
Version: Final published version
ISSN
0884-2914
2044-5326