Show simple item record

dc.contributor.authorAlivisatos, A. Paul
dc.contributor.authorAndrews, Anne M.
dc.contributor.authorChun, Miyoung
dc.contributor.authorChurch, George M.
dc.contributor.authorDeisseroth, Karl
dc.contributor.authorDonoghue, John P.
dc.contributor.authorFraser, Scott E.
dc.contributor.authorLippincott-Schwartz, Jennifer
dc.contributor.authorLooger, Loren L.
dc.contributor.authorMasmanidis, Sotiris C.
dc.contributor.authorMcEuen, Paul L.
dc.contributor.authorNurmikko, Arto V.
dc.contributor.authorPark, Hongkun
dc.contributor.authorPeterka, Darcy S.
dc.contributor.authorReid, Clay
dc.contributor.authorRoukes, Michael L.
dc.contributor.authorScherer, Axel
dc.contributor.authorSchnitzer, Mark
dc.contributor.authorSejnowski, Terrence J.
dc.contributor.authorShepard, Kenneth L.
dc.contributor.authorTsao, Doris
dc.contributor.authorTurrigiano, Gina
dc.contributor.authorWeiss, Paul S.
dc.contributor.authorXu, Chris
dc.contributor.authorYuste, Rafael
dc.contributor.authorZhuang, Xiaowei
dc.contributor.authorBoyden, Edward
dc.date.accessioned2013-08-05T18:00:44Z
dc.date.available2013-08-05T18:00:44Z
dc.date.issued2013-03
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.urihttp://hdl.handle.net/1721.1/79786
dc.description.abstractNeuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function.en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/nn4012847en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleNanotools for Neuroscience and Brain Activity Mappingen_US
dc.typeArticleen_US
dc.identifier.citationAlivisatos, A. Paul, Anne M. Andrews, Edward S. Boyden, Miyoung Chun, George M. Church, Karl Deisseroth, John P. Donoghue, et al. Nanotools for Neuroscience and Brain Activity Mapping. ACS Nano 7, no. 3 (March 26, 2013): 1850-1866.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorBoyden, Edward Stuarten_US
dc.relation.journalACS Nanoen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAlivisatos, A. Paul; Andrews, Anne M.; Boyden, Edward S.; Chun, Miyoung; Church, George M.; Deisseroth, Karl; Donoghue, John P.; Fraser, Scott E.; Lippincott-Schwartz, Jennifer; Looger, Loren L.; Masmanidis, Sotiris; McEuen, Paul L.; Nurmikko, Arto V.; Park, Hongkun; Peterka, Darcy S.; Reid, Clay; Roukes, Michael L.; Scherer, Axel; Schnitzer, Mark; Sejnowski, Terrence J.; Shepard, Kenneth L.; Tsao, Doris; Turrigiano, Gina; Weiss, Paul S.; Xu, Chris; Yuste, Rafael; Zhuang, Xiaoweien_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0419-3351
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record