Show simple item record

dc.contributor.authorQuinn, David J.
dc.contributor.authorPivkin, Igor
dc.contributor.authorWong, Sophie Y.
dc.contributor.authorChiam, Keng-Hwee
dc.contributor.authorDao, Ming
dc.contributor.authorKarniadakis, George E.
dc.contributor.authorSuresh, Subra
dc.date.accessioned2013-08-08T18:55:07Z
dc.date.available2013-08-08T18:55:07Z
dc.date.issued2010-12
dc.date.submitted2010-09
dc.identifier.issn0090-6964
dc.identifier.issn1573-9686
dc.identifier.urihttp://hdl.handle.net/1721.1/79817
dc.descriptionAuthor manuscript; available in PMC 2012 March 1.en_US
dc.description.abstractWe investigate the biophysical characteristics of healthy human red blood cells (RBCs) traversing microfluidic channels with cross-sectional areas as small as 2.7 × 3 μm. We combine single RBC optical tweezers and flow experiments with corresponding simulations based on dissipative particle dynamics (DPD), and upon validation of the DPD model, predictive simulations and companion experiments are performed in order to quantify cell deformation and pressure–velocity relationships for different channel sizes and physiologically relevant temperatures. We discuss conditions associated with the shape transitions of RBCs along with the relative effects of membrane and cytosol viscosity, plasma environments, and geometry on flow through microfluidic systems at physiological temperatures. In particular, we identify a cross-sectional area threshold below which the RBC membrane properties begin to dominate its flow behavior at room temperature; at physiological temperatures this effect is less profound.en_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technologyen_US
dc.description.sponsorshipUnited States. National Institutes of Health (National Heart, Lung, and Blood Institute Award R01HL094270)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10439-010-0232-yen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePubMed Centralen_US
dc.titleCombined Simulation and Experimental Study of Large Deformation of Red Blood Cells in Microfluidic Systemsen_US
dc.typeArticleen_US
dc.identifier.citationQuinn, David J., Igor Pivkin, Sophie Y. Wong, Keng-Hwee Chiam, Ming Dao, George Em Karniadakis, and Subra Suresh. “Combined Simulation and Experimental Study of Large Deformation of Red Blood Cells in Microfluidic Systems.” Annals of Biomedical Engineering 39, no. 3 (March 14, 2011): 1041-1050.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorQuinn, David J.en_US
dc.contributor.mitauthorPivkin, Igoren_US
dc.contributor.mitauthorWong, Sophie Y.en_US
dc.contributor.mitauthorDao, Mingen_US
dc.contributor.mitauthorSuresh, Subraen_US
dc.relation.journalAnnals of Biomedical Engineeringen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsQuinn, David J.; Pivkin, Igor; Wong, Sophie Y.; Chiam, Keng-Hwee; Dao, Ming; Karniadakis, George Em; Suresh, Subraen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6223-6831
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record