MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-γ-butyrolactone

Author(s)
Martin, Collin H.; Dhamankar, Himanshu Hemant; Tseng, Hsien-Chung; Sheppard, Micah James; Reisch, Christopher R.; Prather, Kristala L. Jones; ... Show more Show less
Thumbnail
Download12852_1_merged_1354127798.pdf (1.159Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The replacement of petroleum feedstocks with biomass to produce platform chemicals requires the development of appropriate conversion technologies. 3-Hydroxy-γ-butyrolactone has been identified as one such chemical; however, there are no naturally occurring biosynthetic pathways for this molecule or its hydrolyzed form, 3,4-dihydroxybutyric acid. Here we design a novel pathway to produce various chiral 3-hydroxyacids, including 3,4-dihydroxybutyric acid, consisting of enzymes that condense two acyl-CoAs, stereospecifically reduce the resulting β-ketone and hydrolyze the CoA thioester to release the free acid. Acetyl-CoA serves as one substrate for the condensation reaction, whereas the second is produced intracellularly by a pathway enzyme that converts exogenously supplied organic acids. Feeding of butyrate, isobutyrate and glycolate results in the production of 3-hydroxyhexanoate, 3-hydroxy-4-methylvalerate and 3,4-dihydroxybutyric acid+3-hydroxy-γ-butyrolactone, respectively, molecules with potential uses in applications from materials to medicines. We also unexpectedly observe the condensation reaction resulting in the production of the 2,3-dihydroxybutyric acid isomer, a potential value-added monomer.
Date issued
2013-01
URI
http://hdl.handle.net/1721.1/79823
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Synthetic Biology Center
Journal
Nature Communications
Publisher
Nature Publishing Group
Citation
Martin, Collin H., Himanshu Dhamankar, Hsien-Chung Tseng, et al. 2013 A Platform Pathway for Production of 3-hydroxyacids Provides a Biosynthetic Route to 3-hydroxy-γ-butyrolactone. Nature Communications 4: 1414. 1-10.
Version: Author's final manuscript
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.