Show simple item record

dc.contributor.authorWentz, Christian T.
dc.contributor.authorBernstein, Jacob G.
dc.contributor.authorMonahan, Patrick Erin
dc.contributor.authorGuerra, Alexander
dc.contributor.authorRodriguez, Alex
dc.contributor.authorBoyden, Edward Stuart
dc.date.accessioned2013-08-12T20:32:40Z
dc.date.available2013-08-12T20:32:40Z
dc.date.issued2011-08
dc.date.submitted2011-01
dc.identifier.issn1741-2560
dc.identifier.issn1741-2552
dc.identifier.urihttp://hdl.handle.net/1721.1/79836
dc.description.abstractOptogenetics, the ability to use light to activate and silence specific neuron types within neural networks in vivo and in vitro, is revolutionizing neuroscientists' capacity to understand how defined neural circuit elements contribute to normal and pathological brain functions. Typically, awake behaving experiments are conducted by inserting an optical fiber into the brain, tethered to a remote laser, or by utilizing an implanted light-emitting diode (LED), tethered to a remote power source. A fully wireless system would enable chronic or longitudinal experiments where long duration tethering is impractical, and would also support high-throughput experimentation. However, the high power requirements of light sources (LEDs, lasers), especially in the context of the extended illumination periods often desired in experiments, precludes battery-powered approaches from being widely applicable. We have developed a headborne device weighing 2 g capable of wirelessly receiving power using a resonant RF power link and storing the energy in an adaptive supercapacitor circuit, which can algorithmically control one or more headborne LEDs via a microcontroller. The device can deliver approximately 2 W of power to the LEDs in steady state, and 4.3 W in bursts. We also present an optional radio transceiver module (1 g) which, when added to the base headborne device, enables real-time updating of light delivery protocols; dozens of devices can be controlled simultaneously from one computer. We demonstrate use of the technology to wirelessly drive cortical control of movement in mice. These devices may serve as prototypes for clinical ultra-precise neural prosthetics that use light as the modality of biological control.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH Director’s New Innovator Award (DP2OD002002))en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1R01DA029639)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1RC1MH088182)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1RC2DE020919)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1R01NS067199)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1R43NS070453)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER award)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Grant DMS 1042134)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Grant DMS 0848804)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Grant EFRI 0835878)en_US
dc.description.sponsorshipBenesse Foundationen_US
dc.description.sponsorshipGoogle (Firm)en_US
dc.description.sponsorshipDr. Gerald Burnett and Marjorie Burnetten_US
dc.description.sponsorshipUnited States. Dept. of Defense (CDMRP PTSD Program)en_US
dc.description.sponsorshipMassachusetts Institute of Technologyen_US
dc.description.sponsorshipBrain & Behavior Research Foundationen_US
dc.description.sponsorshipAlfred P. Sloan Foundationen_US
dc.description.sponsorshipSociety for Neuroscienceen_US
dc.description.sponsorshipMassachusetts Institute of Technology. Media Laboratoryen_US
dc.description.sponsorshipMcGovern Institute for Brain Research at MITen_US
dc.description.sponsorshipWallace H. Coulter Foundationen_US
dc.language.isoen_US
dc.publisherInstitute of Physics Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/1741-2560/8/4/046021en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePMCen_US
dc.titleA wirelessly powered and controlled device for optical neural control of freely-behaving animalsen_US
dc.typeArticleen_US
dc.identifier.citationWentz, Christian T, Jacob G Bernstein, Patrick Monahan, et al.A Wirelessly Powered and Controlled Device for Optical Neural Control of Freely-behaving Animals. Journal of Neural Engineering 8.4 (2011): 046021.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorWentz, Christian T.en_US
dc.contributor.mitauthorBernstein, Jacob G.en_US
dc.contributor.mitauthorMonahan, Patrick Erinen_US
dc.contributor.mitauthorGuerra, Alexanderen_US
dc.contributor.mitauthorRodriguez, Alexen_US
dc.contributor.mitauthorBoyden, Edward Stuarten_US
dc.relation.journalJournal of Neural Engineeringen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWentz, Christian T; Bernstein, Jacob G; Monahan, Patrick; Guerra, Alexander; Rodriguez, Alex; Boyden, Edward Sen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1876-3714
dc.identifier.orcidhttps://orcid.org/0000-0002-0419-3351
dc.identifier.orcidhttps://orcid.org/0000-0002-8381-7555
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record