dc.contributor.author | Radtke, Gregg A. | |
dc.contributor.author | Takata, S. | |
dc.contributor.author | Aoki, K. | |
dc.contributor.author | Hadjiconstantinou, Nicolas | |
dc.date.accessioned | 2013-08-14T12:50:50Z | |
dc.date.available | 2013-08-14T12:50:50Z | |
dc.date.issued | 2012-07 | |
dc.date.submitted | 2011-10 | |
dc.identifier.issn | 0022-1120 | |
dc.identifier.issn | 1469-7645 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/79844 | |
dc.description | Author manuscript date January 19, 2012 | en_US |
dc.description.abstract | We use LVDSMC (low-variance deviational Monte Carlo) simulations to calculate, under linearized conditions, the second-order temperature jump coefficient for a dilute gas whose temperature is governed by the Poisson equation with a constant forcing term, as in the case of homogeneous volumetric heating. Both the hard-sphere gas and the BGK model of the Boltzmann equation, for which slip/jump coefficients are not functions of temperature, are considered. The temperature jump relation and jump coefficient determined here are closely linked to the general jump relations for time-dependent problems that have yet to be systematically treated in the literature; as a result, they are different from those corresponding to the well-known linear and steady case where the temperature is governed by the homogeneous heat conduction (Laplace) equation. | en_US |
dc.description.sponsorship | Singapore-MIT Alliance | en_US |
dc.language.iso | en_US | |
dc.publisher | Cambridge University Press | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1017/jfm.2012.282 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | On the second-order temperature jump coefficient of a dilute gas | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Radtke, Gregg A., N. G. Hadjiconstantinou, S. Takata, and K. Aoki. “On the second-order temperature jump coefficient of a dilute gas.” Journal of Fluid Mechanics 707 (September 20, 2012): 331-341. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
dc.contributor.mitauthor | Radtke, Gregg A. | en_US |
dc.contributor.mitauthor | Hadjiconstantinou, Nicolas | en_US |
dc.relation.journal | Journal of Fluid Mechanics | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Radtke, Gregg A.; Hadjiconstantinou, N. G.; Takata, S.; Aoki, K. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-1670-2264 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |