Show simple item record

dc.contributor.authorBorodin, Alexei
dc.contributor.authorSerfaty, Sylvia
dc.date.accessioned2013-08-14T17:52:22Z
dc.date.available2013-08-14T17:52:22Z
dc.date.issued2013-04
dc.date.submitted2012-02
dc.identifier.issn0010-3616
dc.identifier.issn1432-0916
dc.identifier.urihttp://hdl.handle.net/1721.1/79872
dc.descriptionAuthor Manuscript October 23, 2012en_US
dc.description.abstractWe define a “renormalized energy” as an explicit functional on arbitrary point configurations of constant average density in the plane and on the real line. The definition is inspired by ideas of Sandier and Serfaty (From the Ginzburg-Landau model to vortex lattice problems, 2012; 1D log-gases and the renormalized energy, 2013). Roughly speaking, it is obtained by subtracting two leading terms from the Coulomb potential on a growing number of charges. The functional is expected to be a good measure of disorder of a configuration of points. We give certain formulas for its expectation for general stationary random point processes. For the random matrix β-sine processes on the real line (β = 1,2,4), and Ginibre point process and zeros of Gaussian analytic functions process in the plane, we compute the expectation explicitly. Moreover, we prove that for these processes the variance of the renormalized energy vanishes, which shows concentration near the expected value. We also prove that the β = 2 sine process minimizes the renormalized energy in the class of determinantal point processes with translation invariant correlation kernels.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1056390)en_US
dc.description.sponsorshipMathematical Sciences Research Institute (Berkeley, Calif.)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00220-013-1716-zen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleRenormalized Energy Concentration in Random Matricesen_US
dc.typeArticleen_US
dc.identifier.citationBorodin, Alexei, and Sylvia Serfaty. “Renormalized Energy Concentration in Random Matrices.” Communications in Mathematical Physics 320, no. 1 (May 16, 2013): 199-244.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorBorodin, Alexeien_US
dc.relation.journalCommunications in Mathematical Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBorodin, Alexei; Serfaty, Sylviaen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2913-5238
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record