MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning to Detect Patterns of Crime

Author(s)
Wang, Tong; Rudin, Cynthia; Wagner, Daniel; Sevieri, Rich
Thumbnail
DownloadRudin_Learning to.pdf (755.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Our goal is to automatically detect patterns of crime. Among a large set of crimes that happen every year in a major city, it is challenging, time-consuming, and labor-intensive for crime analysts to determine which ones may have been committed by the same individual(s). If automated, data-driven tools for crime pattern detection are made available to assist analysts, these tools could help police to better understand patterns of crime, leading to more precise attribution of past crimes, and the apprehension of suspects. To do this, we propose a pattern detection algorithm called Series Finder, that grows a pattern of discovered crimes from within a database, starting from a \seed" of a few crimes. Series Finder incorporates both the common characteristics of all patterns and the unique aspects of each speci c pattern, and has had promising results on a decade's worth of crime pattern data collected by the Crime Analysis Unit of the Cambridge Police Department.
Date issued
2013-08-21
URI
http://hdl.handle.net/1721.1/79885
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Sloan School of Management
Journal
Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2013
Publisher
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2013
Citation
Wang, Tong, Cynthia Rudin, Dan Wagner, and Rich Sevieri. "Learning to Detect Patterns of Crime." European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2013, Prague, 23-27 September 2013.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.