Show simple item record

dc.contributor.authorColding, Tobias
dc.contributor.authorMinicozzi, William
dc.date.accessioned2013-08-21T15:13:07Z
dc.date.available2013-08-21T15:13:07Z
dc.date.issued2012-03
dc.date.submitted2009-09
dc.identifier.issn0003-486X
dc.identifier.urihttp://hdl.handle.net/1721.1/79889
dc.descriptionAuthor Manuscript August 26, 2009en_US
dc.description.abstractIt has long been conjectured that starting at a generic smooth closed embedded surface in R[superscript 3], the mean curvature flow remains smooth until it arrives at a singularity in a neighborhood of which the flow looks like concentric spheres or cylinders. That is, the only singularities of a generic flow are spherical or cylindrical. We will address this conjecture here and in a sequel. The higher dimensional case will be addressed elsewhere. The key to showing this conjecture is to show that shrinking spheres, cylinders, and planes are the only stable self-shrinkers under the mean curvature flow. We prove this here in all dimensions. An easy consequence of this is that every singularity other than spheres and cylinders can be perturbed away.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0606629)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0405695)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Focused Research Group (Grant DMS-0854774)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Focused Research Group (Grant DMS-0853501)en_US
dc.language.isoen_US
dc.publisherPrinceton University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.4007/annals.2012.175.2.7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleGeneric mean curvature flow I; generic singularitiesen_US
dc.typeArticleen_US
dc.identifier.citationColding, Tobias, and William Minicozzi. “Generic mean curvature flow I; generic singularities.” Annals of Mathematics 175, no. 2 (March 1, 2012): 755-833.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorColding, Tobiasen_US
dc.contributor.mitauthorMinicozzi, Williamen_US
dc.relation.journalAnnals of Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsColding, Tobias; Minicozzi, Williamen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6208-384X
dc.identifier.orcidhttps://orcid.org/0000-0003-4211-6354
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record